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Aripiprazole (ARP) is a novel antipsychotics agent with quinolinone 

derivative. It has been used worldwide since its launch, and its use is expected 
to increase even in the future. Because ARP is taken by a wide age group and 
for the long term, patients who take ARP may be affected by multiple diseases. 
However, information regarding the plasma protein binding of ARP is limited, 
therefore, it is difficult to expect its pharmacokinetics, pharmacodynamics 
and side effects in certain disease based on information of protein binding. 
In this study, we characterized the ARP binding to human serum albumin 
(HSA) and evaluated the effects of post-translational modification of HSA and 
change in the concentration of endogenous substances on ARP binding to HSA. 
 
1) Characterization of ARP binding to HSA 
The binding parameters obtained by an equilibrium dialysis experiment 

indicated that ARP strongly binds to a single site on HSA. Investigation using 
the main metabolite and derivatives of ARP suggested that the chlorine atom 
on the dichlorophenyl-piperazine ring in the ARP molecule plays an 
important role in the binding of ARP to HSA. CD spectroscopic study also 
revealed that the chlorine atom at 3-position of ARP is a factor to determine 
the orientation of ARP in the binding site. In addition, isothermal titration 
calorimetry (ITC) data suggested that hydrophobic interaction contributes to 
the binding of ARP to HSA. 
 

2) Microenviromental analysis of ARP binding site on the HSA molecule 

Competitive binding experiments using fluorescence displacement and 
equilibrium dialysis indicated that ARP binds to site II on HSA. In addition, 
a study using mutants of HSA suggested ARP binds to the region closed to 
411Tyr at site II. Species differences in binding of ARP to albumin were very 
similar to those in diazepam which also possesses a chlorine atom, suggesting 
that chlorine atoms may be responsible for the strong binding to HSA and the 



  
 

species differences. X-ray crystallographic analysis of the APR-HSA complex 
clearly revealed the structure of ARP at site II. ARP was surrounded by 
hydrophobic amino acid residues in site, and the phenyl group on 
dihydroquinolinone ring of ARP was suggested to form -  interactions 
with phenyl group of 411Tyr. The distance between the chlorine atom at the 3-
position of the dichlorophenylpiperazine ring of ARP and the sulfur atom of 
392Cys in the HSA molecule indicated the formation of halogen bond 
interaction.  
 
33) Effect of post-translational modifications of HSA and endogenous 

substances on HSA-ARP binding 
Binding of ARP to HSA was decreased by the post-translational 

modifications of HSA (Oxidized HSA, and glycated HSA) and the increased 
concentrations of endogenous substances (indoxyl sulfate, bilirubin, octanoic 
acid and myristic acid) in vitro, suggesting that in chronic disease conditions 
such as renal disease, liver disease and diabetes mellitus, free ARP might be 
increased. Bilirubin and myristic acid were found to allosterically inhibit ARP 
binding by binding to a different site from ARP, whereas indoxyl sulfate and 
octanoic acid which bind to site II strongly displaced ARP due to competitive 
inhibition. Thus, the accumulation of uremic toxins and fatty acids as well as 
the post-translational modifications of HSA in renal failures might 
significantly reduce the plasma protein binding of ARP, resulting in the 
changes of pharmacokinetics, pharmacodynamics, and side effects of ARP.  
 
 
 In the present study, we clarified the mechanism of ARP binding to HSA, 
and the effects of post-translational modification and endogenous compounds 
on ARP binding to HSA. The data obtained herein provide useful information 
to understand pharmacokinetics, pharmacodynamics and side effects of ARP 
in the patients. In addition, the data based on the structures of ARP and its 
related compounds could be used to predict protein binding characteristics of 
certain drugs which are not only on market but in preclinical stage. 
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Fig. 1. Chemical structure of ARP 
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FFig. 2. Crystal structure of rHSA. The subdivision of rHSA into domains (I-
III) and subdomains (A and B) is indicated, and the approximate locations of 
site I and site II are also shown. Atomic coordinates were taken from the PDB 
entry 1UOR12). The illustration was made with PyMOL. This figure includes 
main binding ligands for each site. 
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FFig. 3. Chemical structures of ARP, its metabolite (dehydro-ARP), and 
structurally related compounds (deschloro-, 2-deschloro-, 3-deschloro- and 
dimetyl-ARP). 
 
 
Table 1. Binding parameters of ARP, its metabolite, and structurally related 
compounds to HSA at pH 7.4 and 25
 

The results are means ± S.D. (n=3). 
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FFig. 4. CD spectra of ARP-HSA systems at pH 7.4 and 25 . 
The concentrations of HSA 40 μΜ, and ARP concentrations were 5 (a), 10 (b), 
20 (c), and 40 μΜ (d). 
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FFig. 5. CD spectra for the interaction of ARP derivatives with HSA at pH 7.4 
and 25 . 
The concentrations of HSA and ligands were 40 and 20 μΜ, respectively. (a-f) 
ARP, dehydro-ARP, deschloro-ARP, 3-deschloro-ARP, 2-deschloro-ARP,  
dimethyl-ARP. 
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Fig. 6. Thermodynamic analysis of interaction between HSA and ARP, and its 
derivatives (2-deschloro-ARP, or 3-deschloro-ARP). ITC measurements were 
performed in the presence of HSA by titrating with ARP (a), 2-deschloro-ARP 
(b), or 3-deschloro-ARP (c)-HSA at pH 6.0 and 35 .  
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TTable 2. Thermodynamic parameters for the binding of ARP and its 
derivatives to HSA 

The results are means ± S.D. (n=3). 
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TTable 3. Binding constants (Ka values) evaluated by equilibrium dialysis for 
the interaction of ARP with HSA at pH 6.0 and pH 7.4 and 25 . 
 

 
a These values were obtained from the experiment performed in the presence of 
2 %(w/v) DMSO at pH 6.0, which is the same conditions as ITC measurement. 
b This value was according to Sakurama et al21  
The results are means ± S.D. (n=3). 
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FFig. 7. Effects of ARP on the fluorescence of warfarin and dansylsarcosine  
when bound to HSA. 
The concentration of HSA, warfarin, and dansylsarcosine was 2 μM.
Closed and open circles are the effects on the fluorescence of warfarin and 
dansylsarcosine, respectively. 
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FFig. 8. Scatchard plots for bindings of warfarin (a), ibuprofen (b) and 
diazepam (c) to HSA in the absence (closed circle) and presence (open circle) 
of ARP at pH 7.4 and 25 . The concentrations of HSA and ARP were 40 
M and 10 M, respectively. 
The concentrations of warfarin, ibuprofen and diazepam were 2.5-40 μ  and 
10-40 μ , respectively. 
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TTable 4. Binding parameters for bindings of warfarin, ibuprofen and 
diazepam to HSA in the absence and presence of ARP at pH 7.4 and 25 . 
 

 
The concentrations of warfarin, ibuprofen and diazepam were 2.5-40 μ  and 
10-40 μ , respectively. 
The results are means ± S.D. (n=3) 
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Fig. 9. CD spectra for the interactions of ARP with HSA (a), W214A (b), and 
Y411A (c) at pH 7.4 and 25 .   
The concentrations of albumins and ARP were 40 μM and 20 μM, respectively. 
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TTable 5. Parameters for interaction ARP and deschloro-ARP with mammalian 
albumins 
 

The results are means ± S.D. (n=3). 
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FFig. 10. CD spectra of ARP bound to various albumin molecules at pH 7.4 at 
25 . The concentration of albumin was 40 μM and ARP concentration was 
20 μM, respectively.  
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FFig. 11. CD spectra of deschloro-ARP bound to various albumin molecules at 
pH 7.4 at 25 . The concentration of albumin was 40 μM and deschloro-
ARP concentration was 20 μM.  
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TTable 6. Data-Collection and Structure Refinement Statistics 

Values in parentheses denote the highest resolution shell 

Data set  ARP–HSA complex 
Data-collection   
 Source Photon Factory BL-17A 
 wavelength Å  0.9800 
 Space group P21 
 Unit-cell parameters  
 length (Å) a = 59.2, b = 184.9, c = 59.3, 
 angle ( )  = 106.7 
 Resolution range Å  50.0 – 2.28 (2.42 – 2.28) 
 No. of observed reflections 361 307 (58 618) 
 No. of unique reflections 54 292 (8 793) 
 Multiplicity  6.7 (6.7) 
 Completeness  97.7 (99.1) 
 Rmerge

a 8.3 (46.8) 
 I/  (I)  14.2 (3.3) 
Refinement   
 Resolution Å  48.4 – 2.28 (2.32 – 2.28) 
 Reflection used 54 291 (2 793) 

 Rwork b  
Rfree c 

20.7 (27.3) 
25.5 (35.2) 

 Completeness  97.8 (94.0) 
 No. of non-hydrogen atoms 8 920 
 Protein 8 466 
 Ligands 80 
 Solvent 374 
 r.m.s.d. from ideality  
 bond length Å  0.002 
 bond angle  0.424 
 Average B-factor 51.1 
 Protein 51.7 
 Ligands 44.9 
 Solvent 38.7 
 Ramachandran plot  
 favored region    93.63 
 allowed region  6.28 
 outlier region  0.09 
 Clashscore 7.0 
 Twin operators (l, -k, h) 
 Twin fractions 0.48 
a Rmerge  100 × hkl i Ii(hkl)  I(hkl)  / hkl i Ii(hkl), where I(hkl)  is the mean value 
of I(hkl). b Rwork  100 × hkl Fo   Fc   / hkl Fo , where Fo and Fc the observed and 
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calculated structure factors, respectively. c Rfree is calculated as for Rwork, but for the test 
set comprising 5% reflections not used in refinement. 
 

 
FFig. 12. Overall structure of the ARP−HSA complex. (a) Overall structures 
of the ARP−HSA complex (PDB: 6A7P) . The HSA molecule is shown as a 
cartoon representation, and the sub-domain structures are colored in 
magenta (IA), pink (IB), green (IIA), palegreen (IIB), blue (IIIA), and cyan 
(IIIB). The ARP molecule (yellow) is shown as a CPK 
(Corey−Pauling−Koltun) representation. (b) 2mFo−DFc electron density map 
of ARP is shown as a blue mesh control at 1.5σ.  
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FFig. 13. ARP binding at subdomain IIIA in HSA. (a) Stereo-view of the 
binding of ARP at subdomain IIIA. The ARP molecule (yellow) is shown as a 
ball-and-stick representation. (b) Comparison of the binding position of ARP 
(yellow) with that of diazepam (magenta stick, PDB: 2BXF )17) at drug site 
II. Chlorine atoms are colored in green and hydrogen bonds are shown as 
orange dashed lines. (c) Comparison of the position of binding of ARP 
(yellow) with myristic acid (orange stick, PDB: 1BJ9 ) 32) at FA site 4.  
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TTable 7. Binging parameters of ibuprofen and diazepam (site II drugs) to 
different serum albumins estimated by equilibrium dialysis at pH 7.4 and 
25  from Kosa et al. (1997) 

 
The results are means ± S.D. (n=3)  N.D; Not determined. 
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FFig. 14. SDS-polyacrylamide gel electrolysis in the presence of β-
mercaptoethanol of HSA samples. Protein samples (0.5 μg per lane) were 
loaded onto 10% polyacrylamide gel. 
Lanes:  molecular weight markers; HSA;  CT1mM-1hr-HSA;  
CT1mM-2hr-HSA; CT10mM-1hr-HSA;  CT10mM-2hr-HSA;  control (without 
glucose) HSA;  Glycated HSA;  MCO12hr-HSA;  MCO24hr-HSA  
CT-HSA was prepared by mixing 300 μ  of HSA with 1 mM or 10 mM of CT in 
phosphate buffer for 1 or 2 hours at 37 . 
MCO-HSA was prepared by mixing 300 μ  of HSA with10 M of FeCl2 4H2O with 
100 mM of ascorbic acid in 50 mM Tris buffer (pH 7.4) for 12 or 24 hours. 
Glycated HSA was prepared by mixing HSA (5 mg/ml) with 50 mM glucose at 37  
for 30 days. 
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Fig. 15. Caarbonyl Contents of HSAs 
HSA;  CT1mM-1hr-HSA;  CT1mM-2hr-HSA;  CT10mM-2hr-HSA;  

CT10mM-2hr-HSA;  MCO12hr-HSA;  MCO24hr-HSA HSA incubated for 
30 days without glucose;  Glycated HSA  
means S.D. (n=3). *, p<0.05 as compared with HSA 
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FFig. 16. CD spectra of HSAs at 25 . (a) was Far-UV CD. (b) was Near-UV 
CD.  
The proteins concentration of (a) and (b) were 2 μM and 40 μM, respectively. 
Spectra were shown for HSA, CT10mM-2hr -HSA, MCO24hr -HSA, Glycated HSA. 
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FFig. 17. Tryptophan fluorescence emission spectra of HSA, CT-HSA, 
Glycated HSA, MCO-HSA at 25 .   
The proteins’ concentrations were 20 μM. Spectra was excited at 285 nm. 
Spectra were shown for native HSA, CT10mM-2hr -HSA, MCO24hr -HSA, Glycated 
HSA.  
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FFig. 18. Relative ARP free fraction for binding to native and modified HSAs 
estimated by equilibrium dialysis at 25 . The concentrations of ARP and 
HSAs were 20 μM and 40 μM, respectively.  

 HSA  CT10mM-2hr - HSA,  MCO24hr - HSA,  control (without 
glucose) HSA,  Glycated HSA 

means S.D. (n=3). *, p<0.05 as compared with control HSA 
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Fig. 19. Induced CD spectra of ARP-HSAs at pH7.4 and 25 . The 
concentration of ARP and albumin were 20 μM and 40 μM, respectively.  
Spectra were shown for HSA, CT10mM-2hr -HSA, MCO24hr -HSA, Glycated HSA.  
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FFig. 20. Effect of indoxyl sulfate (a) and bilirubin (b) on ARP binding to HSAS 
at pH 7.4 and 25 .   

control (in the absence of toxin); in the presence of indoxyl sulfate  
(20 μM);  in the presence of indoxyl sulfate  (40 μM);  in the 
presence of bilirubin (20 μM);  in the presence of bilirubin (40 μM) 
means S.D. (n=3).*, p<0.05 as compared with ligands 0 μM  
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Fig. 21. Effect of octanoic acid ( ) and myristic acid ( ) in ARP binding to 
HSA at pH7.4 and 25 . 
The concentrations of HSA, ARP, and octanoic acids and myristic acids were 
40 μM, and 20 μM ARP, and 0, 40, 80, 120 μM, respectively. 
means S.D. (n=3).*, p<0.05 in comparison with 0 μM fatty acids. 
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FFig. 22. Effects of octanoic acids (a) and myristic acids (b) on CD spectra for 
the interactions of ARP with HSA at pH 7.4 and 25 . 
The concentrations of HSA, ARP, and octanoic acids and myristic acids (a)-(f) 
were 40 μM, and 20 μM ARP, and 0, 10, 20, 40, 80, 120 μM, respectively. 
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HSA -80 HSA

50 mM pH 7.0 150 mM 

KCl 20 mg/mL 2 HSA

Hiload 16/60 Superdex 75pg GE Healthcare

HSA Vivaspin 15 Sartorius, 10,000 50 mM

pH 7.0

HSA 200 mg/mL HSA

-80  

ARP DMSO 50 mM

 ARP-HSA 50 mM pH 7.0

10 v / v DMSO HSA ARP 1 5 

20 ARP HSA

ARP 20 C 20,400 g 1 50 mM

pH 7.0 Vivaspin 500 Sartorius, 10,000

DMSO 1% 1.4 

mM HSA ARP HSA  

HSA ARP

ARP-

HSA  

 

Table HSA ARP
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Table Crystallization conditions of the HSA-ARP complex 
     

condition     

Droplet: Total 3.0 μL 
  HSA-ARP mixture#1 1.5 μL 
  Reservoir solution  1.5 μL 
Reservoir: Total  0.4 mL 
  32%(w/v)PEG3350   

  50mM potassium phosphate buffer pH 
7.0 

 

Temperature:  4  
#1containing 1.4 mM HSA, 7 mM ARP, and 50mM potassium phosphate 
buffer pH 7.0. 
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