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Figure 1. Schematic drawing of enhanced permeability and retention effect and photodynamic 

therapy 
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Figure 2. Chemical structures of zinc protoporphyrin (ZnPP), zinc bis(ethylenediamino) 

protoporphyrin (ZnPPED) and poly(styrene-co-maleic acid)-conjugated zinc protoporphyrin 

(SMA-ZnPP).  
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 IX PP - SMA

 7,000 3-(4,5-Dimethyl-2-thiazolyl- 

2,5-diphenyl-2H-tetrazolium bromide MTT WSC

 

 

IX PP 100 mg 0.178 mmol THF 20 

mL 10

0.245 mL 0.34 mL 20

10 5C 150 mm

50 °C THF

THF 20 mL

 2.4 mL 15 40 °C

THF

PPED

 

PPED HPLC Asahipak GF-310 7.5×300 

mm 10ppm 

3 / 7 15 0.8 mL/min 415 

nm PPED 12 PP 5.1

 

TLC  / =9/1 v/v 60F254 MERCK
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Rf PP Rf 0 PP

Rf 0.9 PPED Rf 0  

 

PPED 100 mg 0.154 mmol DMSO 100 mL

PPED 10

60 °C 2 10 DMSO

4,000 g 5

 

 

Poly styrene-co-maleic anhydride SMA 100 mg ZnPPED 20 mg 0.028 mmol

DMF 10 mL ZnPPED 10

WSC 60 °C 24 10

0.2 M  40 mL 60 °C 24

ZnPPED

Sephadex G-50 Fine column
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Asahipak GF-310 HQ 7.5×300 mm

DMF 0.5 mL/min 415 nm  
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SMA-ZnPP 2 mg/mL pH 7.4 0.45 

m ELS-Z2

 

 

 

SMA-ZnPP DMSO pH 7.4

F-4500 420 nm 550−700 nm

SMA-ZnPP Tween 20 0.2

0.5 1 v/v% 5 7 9 M 0.1 0.2 0.5 

mg/mL  

 

HeLa 10%

DMEM 37 °C 5% CO2

96 well HeLa 3,000 cells/well

24 SMA-ZnPP

SMA-ZnPP 24 420 nm 11.1 W/m2

15 24 well 0.5 mg/mL

MTT 3 DMSO 100 L

570 nm

 

 

6 ddY 35−40 g 2×106 cells 

S-180 10 mm

SMA-ZnPP 15 mg-ZnPP/kg 24 
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100 mg 1 mL DMSO 12,000 g 10

25 °C  420 nm  590 nm

 

 

10 mm S-180 SMA-ZnPP 

15 mg-ZnPP/kg IVIS Lumina XR Caliper 

Life Science  430 ± 15 nm  

695−770 nm  
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Figure 3. Typical chromatograms of ZnPPED (A) and SMA-ZnPP (B) 

SMA-ZnPP conjugate was analyzed by high performance size exclusion chromatography. 

Column: Asahipak GF-310 HQ (i.d. 7.5 × 300 mm), mobile phase: DMF, flow rate: 0.5 

mL/min, detection: absorbance at 415 nm. 
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Figure 4. Particle size of SMA-ZnPP conjugate in PBS. 

Hydrodynamic particle size of SMA-ZnPP conjugate was measured by dynamic light 

scattering, showing a mean particle size of 74.3 nm.  
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(A) 

(B) 

 

Figure 5. Fluorescence spectra of SMA-ZnPP conjugate under various conditions.  

Fluorescence intensity of SMA-ZnPP in distilled water was smaller than that in DMSO 

(A).  SMA-ZnPP (0.01 mg/mL) was dissolved in PBS, and its fluorescence intensity in the 

presence of Tween 20 (B), urea (C) and lecithin (D) were measured.  (Continued) 
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Figure 5. Fluorescence spectra of SMA-ZnPP conjugate under various conditions.  
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µg-ZnPP/mL ZnPP IC50 5 g/mL SMA-ZnPP

IC50 6 1 ZnPP SMA-ZnPP

SMA-ZnPP SMA-ZnPP IC50 12 g-ZnPP/mL

3  

 

   

Figure 6. In vitro cytotoxicity of SMA-ZnPP conjugate with or without light irradiation in 

HeLa cells. 

HeLa cells seeded on a 96 well plate at 3,000 cells per well.  At 24 h later, HeLa cells 

were treated with SMA-ZnPP or ZnPP.  After another 24 h, HeLa cells were treated with or 

without light irradiation (blue fluorescent light 420 nm, 1.0 J/cm2), which were incubated for 

48 h.  Cell viability was determined by MTT assay.  Data were mean ± standard error (n = 

3). 
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Figure 7. In vivo tumor imaging (A) and body distribution of SMA-ZnPP conjugate (B) after 

i.v. injection in tumor-bearing mice.  

SMA-ZnPP (15 mg-ZnPP/kg) was injected into S-180 tumor bearing mice.  (A) At 

indicated times, fluorescence images were taken by an IVIS Lumina-XR.  (B) At 24 h later, 

mice were dissected, which each organ was collected.  SMA-ZnPP was extracted from one 

organ, and was quantified by fluorescence spectrometer.  Excitation wavelength: 420 nm.  

Data were mean ± standard deviation (n = 3).  (Continued) 
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(B) 

 

 

Figure 7. In vivo tumor imaging (A) and body distribution of SMA-ZnPP conjugate (B) after 

i.v. injection in tumor-bearing mice.  
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Figure 8. Chemical structure of HA-ZnPP conjugate 
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DMSO HA-ZnPP 0.5 mg/mL ZnPPED 0.05 mg/mL 10 µL

0.1 M pH 9.8 10 µL TNBS 0.5 mg/mL 10 µL

DMSO 70 µL 37 °C 2 420 nm

L-
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415 nm 10ppm DMSO 3 / 7
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Prominence HPLC 
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1 cm
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37 °C 5% CO2 0.05% EDTA-trypsin

 

 

HeLa 24 well plate 2×105 cells/well 24 
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PBS 2 1% SDS

60 W 20

DMSO HA-ZnPP ZnPP  420 

nm 500−700 nm HA-ZnPP ZnPP

BCA protein assay kit
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WST-1 4 420 nm

MTT 3 570 nm

MTT MTT 100 µL DMSO

HA-ZnPP 0.15 M KCl 0.1 M pH 5.4
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Figure 9. Thin-layer chromatographic analyses of ZnPP, activated ZnPP and ZnPPED in the 

synthesis of ZnPPED. 

Developing solvent: chloroform 9 /methanol 1
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(A)  

 
 

(B) 

 
Figure 10. Picture of ethanol washings during the purification of HA-ZnPP after conjugation 

of ZnPPED to HA (A) and typical HPLC chromatograms of ZnPPED (top of B) and 

HA-ZnPP (bottom of B).  

HA-ZnPP conjugate was analyzed by high performance size exclusion chromatography. 

Column: Asahipak GF-310 HQ (i.d. 7.5 × 300 mm), mobile phase: mixture of DMSO (3) and 

methanol (7) containing 10ppm of trifluoroacetic acid, flow rate: 0.8 min/mL. 
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Figure 11. Particle size of HA (A) and HA-ZnPP (B) in PBS. 

Hydrodynamic particle sizes of HA and HA-ZnPP conjugate were measured by dynamic 

light scattering, showing mean particle size of 3.1 and 129.8 nm, respectively. 
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Figure 12. UV-Vis absorption spectra of HA-ZnPP (A) and ZnPP (B) in various media. 

HA-ZnPP or ZnPP was dissolved in various media indicated in the panels, and their 

absorption spectra were measured by a spectrophotometer. 
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(A) 

      

(B) 

     
Figure 13. Fluorescence spectra of HA-ZnPP (A) and ZnPP (B) in various media. 

HA-ZnPP or ZnPP was dissolved in the indicated solutions in the panels, and their 

fluorescence spectra were measured by a fluorescence spectrometer.  Excitation wavelength: 

420 nm. 
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(A) 

     

(B) 

     

Figure 14. Fluorescent spectra of HA-ZnPP in PBS containing lecithin (A) and urea (B). 

HA-ZnPP was dissolved in PBS, and was mixed with lecithin (A) and urea (B). 

Fluorescence spectra of HA-ZnPP in each was measured by a fluorescence spectrometer.   

Excitation wavelength: 420 nm. 
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Figure 15. 1O2 generation from HA-ZnPP upon light irradiation. 

1O2 generation from HA-ZnPP and ZnPP dissolved in (A) PBS and PBS containing (B) 

0.1% lecithin, (C) 1% SDS or (D) DMF.  HA-ZnPP or ZnPP solutions were irradiated with a 

xenon lamp at 400–700 nm (20 mW/cm2) for indicated time period.  1O2 generated in the 

solutions was captured by 4-oxo-TEMP, and the resulting 4-oxo-TEMPO was detected by 

ESR.  Data were mean ± standard deviation to the no light-irradiation control (n = 3).  * P < 

0.05. (Continued) 
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HA-ZnPP Figure 16 Figure 17
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Figure 16. HPLC chromatograms of HA-ZnPP treated with hyaluronidase. 

HA-ZnPP was allowed reacting with hyaluronidase in acetate buffer (pH 5.4) containing 

0.15 M KCl at 37 °C, and the resulting materials were analyzed by HPLC.  Column: 

Asahipak SB804 HQ (i.d. 8.0 × 300 mm), mobile phase: 0.1 M sodium phosphate buffer (pH 

7.4), flow rate: 0.5 min/mL. 
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Figure 17. Fluorescence spectra of HA-ZnPP treated with hyaluronidase. 

HA-ZnPP (0.5 mg/mL) was dissolved in acetate buffer (pH 5.4) containing 0.15 M KCl, 

and was allowed reacting with 0.5 mg/mL hyaluronidase at 37 °C.  Fluorescent spectra of 

HA-ZnPP were measured by a fluorescence spectrometer at the indicated time after mixing 

with the enzyme.  Excitation wavelength: 420 nm.  
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Figure 18. Cellular uptake of HA-ZnPP into HeLa cells.   

Hela cells seeded on 1.88 cm2 dishes were treated with ZnPP or HA-ZnPP in the absence 

or presence of HA for indicated time period.  Intracellular drug amount was determined by 

fluorescence spectrometry, and normalized by the cellular protein amount.  Data were mean 

± standard deviation (n = 6). 
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(B) 

 

Figure 19. Cytotoxicity of HA-ZnPP to HeLa (A and C) and S-180 cells (B). 

HeLa (A) and S-180 (B) cells seeded on 96-well plates were treated with HA-ZnPP.  

HeLa cells (C) were also treated with HA-ZnPP pretreated with hyaluronidase.  At 24 h light 

irradiation, cells were incubated another 48 h.  Cell viability was determined by MTT or 

WST-1 assay.  Data were mean ± standard deviation (n = 3).  (Continued) 
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(A) 

 

(B) 

 

Figure 20. Body distribution of HA-ZnPP in S-180 tumor-bearing mice at 24 (A) and 48 (B) h 

after the ZnPP or HA-ZnPP administration.  

S-180 tumor-bearing mice were received ZnPP or HA-ZnPP at 15 mg-ZnPP/kg via the 

tail vein.  At 24 and 48 h after the ZnPP or HA-ZnPP administration, mice were sacrificed 

and selected organs were collected after transcardial perfusion with saline.  The amounts of 

the ZnPP after extraction were measured by fluorescence spectrometry.  Data were mean ± 
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standard deviation (n = 6). 

 

Figure 21. Antitumor effect of HA-ZnPP in S-180 tumor-bearing mice.   

S-180 tumor-bearing mice were treated with 15 mg-ZnPP/kg of ZnPP or HA-ZnPP 

(black arrows) followed by with or without light irradiation (white arrows).  Tumor volumes 

were measured as described in Materials and Methods.  Data were mean + standard 

deviation (n = 5).  *P < 0.05 versus HA-ZnPP singly-treated group ( ). 
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(A) 

 

(B) 

 

(C) 

 
Figure 22. Representative images of mouse treated without drug (A), and mouse treated with 

HA-ZnPP + light (B) and ZnPP + light (C) at 30 days after S-180 tumor inoculation.  
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