博士論文

クサリヘビ科ヘビの毒ホスホリパーゼ A₂ (PLA₂)
遺伝子の起源と分子進化

平成 27 年度

崇城大学 大学院工学研究科
応用生命科学専攻 博士課程
生命情報科学講座

1319D02

山口 和 晃
目次
1. 要約 .. 1
2. 略語一覧及び命名及び略称表記法に関する規則 3
3. 序論 ... 6
 3-1. ヘビに関する生物学的知識
 3-2. 日本に生息するクサリヘビ科ヘビ
 3-3. ホスホリバーゼ A2 (PLA2) の構造と機能
 3-4. ハブ属ヘビより単離された PLA2 アイソザイム
 3-4-1. ホンハブ (Protobothrops flavoviridis)
 3-4-2. トカラハブ (Protobothrops tokarensis)
 3-4-3. サキシマハブ (Protobothrops elegans)
 3-4-4. ヒメハブ (Ovophis okinavensis)
 3-5. 生物進化のプロセスと現代の進化論
 3-6. 加速進化
 3-7. クサリヘビ科ヘビの IIA 型毒 PLA2 アイソザイムをコードする遺伝子とそのゲノム構造
 3-8. ゲノム内に散在するレトロトランスポゾン
 3-9. 研究の目的
4. 材料と方法 ... 23
 4-1. 試料と試薬
 4-1-1. 試料
 4-1-2. 試薬
 4-2. ゲノム構造解析
 4-2-1. ハブ組織からのゲノム DNA 抽出
 4-2-2. コスミドを用いたゲノムライブラリーの構築
 4-2-3. コロニーアイプリダイゼーション法による目的クローンのスクリーニング
 4-2-4. コスミドクローンの取扱いとその抽出及び塩基配列決定
 4-2-5. ゲノミック PCR
 4-2-6. Ligation-mediated PCR
 4-2-7. TOPO クローニング
 4-2-8. 形質転換及び大腸菌培養
4-2-9. プラスミド DNA 抽出 (アルカリ SDS 法)
4-2-10. サイクルシークエンス法による塩基配列決定

4-3. 遺伝子及びタンパク質発現解析
4-3-1. ハブ組織からの RNA 抽出
4-3-2. 1st strand cDNA 合成
4-3-3. 逆転写 PCR
4-3-4. 5'/3' Rapid amplification of cDNA end (RACE)
4-3-5. アフィニティークロマトグラフィー
4-3-6. 大腸菌組換えタンパク質発現
4-3-7. ウェスタンプロッティング

4-4. エピゲノム解析
4-4-1. ゲノム DNA のバイサルファイト処理
4-4-2. バイサルファイト PCR と TA クローニング
4-4-3. バイサルファイトシークエンス

4-5. 遺伝子コピー数解析
4-5-1. リアルタイム PCR

4-6. 染色体解析
4-6-1. FISH 解析

4-7. バイオインフォマティクス手法を用いたドライな解析
4-7-1. Local BLAST 環境の構築
4-7-2. Local RepeatMasker 環境の構築
4-7-3. RAxML を用いた系統解析
4-7-4. codeml プログラムを用いた K_A/K_S 解析
4-7-5. mcmetree プログラムを用いた分岐年代推定

5. 結果と議論 ... 107

5-1. 比較ゲノム解析から明らかになった PLA2 遺伝子のゲノム構造とその進化
5-1-1. ホンハブとヒメハブの PLA2 遺伝子クラスター領域で見つかった新規グループの PLA2 遺伝子群
5-1-2. ホンハブとヒメハブの IIA 型 PLA2 遺伝子及びそのクラスター領域のゲノム構造
5-1-3. クサリヘビ科ヘビの PLA2 遺伝子クラスター領域に頻繁に散
在する IIE 型 PLA₂ 遺伝子に高い同定性を示す塩基配列

5-1-4. ホンハブとヒメハブの PLA₂ 遺伝子クラスター領域のゲノム構造の比較から分かったヒメハブ PLA₂ 遺伝子クラスター領域での大規模な欠失

5-1-5. PLA₂ 遺伝子クラスター領域のゲノム構造の種間・種内比較から推定される分子進化過程

5-2. クサリヘビ科ヘビの[Lys⁴⁹]PLA₂ の比較から明らかになったハブ毒 PLA₂ の島嶼間多様性とその進化

5-2-1. クサリヘビ科ヘビの[Lys⁴⁹]PLA₂ の島嶼間多様性

5-2-2. トカラハブの[Lys⁴⁹]PLA₂ 遺伝子に見出された特徴的な挿入配列

5-2-3. トランススポゾンと AID/APOBEC ファミリータンパク質

5-3. クサリヘビ科ヘビ PLA₂ 遺伝子発現とそれを調節するエビジェネティクス

5-3-1. IB 及び IIA 型 PLA₂ 遺伝子のプロモーター領域のメチル化状態比較

5-3-2. IB 及び IIA 型 PLA₂ 遺伝子のプロモーター領域に結合する転写因子の探索

5-4. 研究の総括論議

6. 図表 ..142

6-1. Figures

6-2. Tables

7. 付録 ..251

7-1. プライマリリスト

8. 参考文献 ..253

9. 謝辞 ..280
1. 要約

ヒト種をはじめとする哺乳類ゲノムに共通してコードされている 11 グループ (IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIA, XIIB) の分泌型ホスピリバーゼ A2 (PLA2) のうち、IIA 型の PLA2 はクサリヘビ科ヘビの毒中からも見出され、クサリヘビ科ヘビ毒の主要な成分の 1 つとしてよく知られている。クサリヘビ科ヘビの毒に含まれる IIA 型 PLA2 は 49 番目のアミノ酸の違いから [Asp49] 型と [Lys49] 型の 2 つに大別され、それらをコードする遺伝子は重複により多重遺伝子ファミリーを形成し、多重遺伝子に由来する複数のアイソザイムを有していることが報告されている。当研究室でもこれまでに日本南西諸島に棲息するクサリヘビ科マムシ亜科ヘビであるホンヘブ (Protobothrops flavoviridis), トカラハブ (P. tokarensis), サキシマハブ (P. elegans), ヒメハブ (Ovophis okinavensis) の毒に含まれている PLA2 アイソザイムの機能解析及び比較解析を行い、それらハブ毒 PLA2 アイソザイム遺伝子がマイクロ染色体の 2 つの遺伝子座でタンデムに並んだ遺伝子クラスターを形成していることが、ハブ毒 PLA2 アイソザイム遺伝子の多重化にはレトロトランススポンソンの 1 つとして知られている CR1-like LINE (Chicken repeat 1-like long interspersed nuclear element) が関与していることを明らかにしてきた。

本研究では、ハブ毒 PLA2 アイソザイム遺伝子の進化とその起源、そして遺伝子クラスター形成の過程を探るために、ホンヘブとヒメハブの毒 PLA2 アイソザイム遺伝子クラスターのノモ構造を明らかにし、その構造を哺乳類、鳥類、ヘビ類の非毒性分泌型 PLA2 遺伝子クラスターと比較した。その結果、クサリヘビ科ヘビの IIA 型毒 PLA2 アイソザイム遺伝子クラスター内とその近傍に IIF, IID, IIE 型の PLA2 をコードする遺伝子を見出し、ハブ毒 PLA2 アイソザイム遺伝子クラスターと非毒性生物が普遍的に有する分泌型 PLA2 遺伝子クラスターの間にはゲノムのシンテニーが保存されていることを明らかにした。即ち、クサリヘビ科マムシ亜科ヘビの毒 PLA2 アイソザイム遺伝子クラスターが、非毒性生物から見出される分泌型 PLA2 遺伝子クラスターと起源を同じくすることを明らかにし、クサリヘビ科ヘビでは、IIA 型 PLA2 遺伝子のみが高頻度に多重化したゲノム構造を独自に形成していることが示された。さらに、比較ゲノ
ム解析と分子系統解析によって、ヒメハブでは向かい合う 2 つの IID 型 PLA2 遺伝子が同一 DNA 鎖上で相補的な塩基対結合をすることでステムループ構造を形成して欠落したことを明らかとし、クサリヘビ科ヘビにおける IIA 型 PLA2 遺伝子クラスターの起源その形成過程の一端をも解き、ホンハブとヒメハブの種分化プロセスを交えた新たな知見を報告する。

さらに、トカラハブとホンハブの [Lys49]PLA2 アイソザイムの比較から、[Lys49]PLA2 アイソザイムのサブタイプの種類が島嶼間集団特異的な多様性を示すことを見出した。また、トカラハブ[Lys49]PLA2 遺伝子にのみ特異的に挿入されているレトロトランススポソン LINE-1 の存在を明らかにし、クサリヘビ科ヘビの[Lys49]PLA2 アイソザイムの島嶼間多様性を生み出す要因の 1 つとしてレトロトランススポソンが関与していることを提案し、ハブ毒 PLA2 アイソザイム遺伝子で見られる加速進化にもレトロトランススポソンが関与している可能性についても提案した。加えて、クサリヘビ科ヘビの分泌型 PLA2 遺伝子のエビジェネティクスについても報告する。
2. 略語一覧及び命名及び略称表記法に関する規則
ここで示す略語は本論文内で頻出するものを記載する。

<table>
<thead>
<tr>
<th>略語</th>
<th>正式名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTB</td>
<td>Actin, beta</td>
</tr>
<tr>
<td>AID</td>
<td>Activation-induced deaminase</td>
</tr>
<tr>
<td>APOBEC</td>
<td>Apolipoprotein B mRNA-editing enzyme catalytic polypeptide</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic local alignment search tool</td>
</tr>
<tr>
<td>C. m. pyrrhus, Cmp</td>
<td>Crotalus mitchellii pyrrhus</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CDS</td>
<td>Coding sequence</td>
</tr>
<tr>
<td>CR1</td>
<td>Chicken repeat 1</td>
</tr>
<tr>
<td>CTCF</td>
<td>CCCTC binding factor</td>
</tr>
<tr>
<td>CYTB</td>
<td>Cytochrome b</td>
</tr>
<tr>
<td>D. typus, Dt</td>
<td>Dispholidus typus</td>
</tr>
<tr>
<td>DSB</td>
<td>Double strand break</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EN</td>
<td>Endonuclease</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed sequence tag</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescence in situ hybridization</td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic DNA</td>
</tr>
<tr>
<td>G. gallus, Gg</td>
<td>Gallus gallus</td>
</tr>
<tr>
<td>INDEL</td>
<td>Insertion- Deletion</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactoside</td>
</tr>
<tr>
<td>H. sapiens, Hs</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>L. madagascariensis, Lm</td>
<td>Leioheterodon madagascariensis</td>
</tr>
<tr>
<td>LCR</td>
<td>Locus control region</td>
</tr>
<tr>
<td>LINE</td>
<td>Long interspersed nucleotide element</td>
</tr>
<tr>
<td>LM-PCR</td>
<td>Ligation-mediated PCR</td>
</tr>
<tr>
<td>LTR</td>
<td>Long Terminal Repeat</td>
</tr>
<tr>
<td>M. musculus, Mm</td>
<td>Mus musculus</td>
</tr>
<tr>
<td>Mul1</td>
<td>Mitochondrial E3 Ubiquitin Protein Ligase 1</td>
</tr>
<tr>
<td>ND4</td>
<td>NADH dehydrogenase, subunit 4</td>
</tr>
<tr>
<td>NTC</td>
<td>No Template Control</td>
</tr>
<tr>
<td>O. hannah, Oh</td>
<td>Ophiophagus hannah</td>
</tr>
</tbody>
</table>

3
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Okinavensis, Oo</td>
<td>Ovophois okinavensis</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>OTUD3</td>
<td>Ovarian tumor domain-containing protein 3</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>P. elegans, Pe</td>
<td>Protobothrops elegans</td>
</tr>
<tr>
<td>P. flavoviridis, Pf</td>
<td>Protobothrops flavoviridis</td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulsed-field gel electrophoresis</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>P. m. bivittatus, Pm</td>
<td>Python molurus bivittatus</td>
</tr>
<tr>
<td>P. tokarensis, Pt</td>
<td>Protobothrops tokarensis</td>
</tr>
<tr>
<td>PCI</td>
<td>Phenol:Chloroform:Isoamyl Alcohol 25:24:1 Mixed</td>
</tr>
<tr>
<td>PcRTF</td>
<td>PLA₂ gene-coupled reverse transcriptase fragment</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>PLA₂</td>
<td>Phospholipase A₂</td>
</tr>
<tr>
<td>PPIH</td>
<td>Peptidylprolyl Isomerase H</td>
</tr>
<tr>
<td>RACE</td>
<td>Rapid amplification of cDNA ends</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal rna</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcriptase</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription-PCR</td>
</tr>
<tr>
<td>SD</td>
<td>Segmental Duplication</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SINE</td>
<td>Short interspersed nucleotide element</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>sPLA₂</td>
<td>Secretory PLA₂</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>TSD</td>
<td>Target site duplication</td>
</tr>
<tr>
<td>UBXN10</td>
<td>Ubiquitin regulatory X domain (UBX) domain-containing protein 10</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>V. b. berus, Vb</td>
<td>Vipera berus berus</td>
</tr>
<tr>
<td>VWA5B1</td>
<td>Von Willebrand Factor A Domain Containing 5B1</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-D-galactoside</td>
</tr>
<tr>
<td>YBX1</td>
<td>Y Box Binding Protein 1</td>
</tr>
</tbody>
</table>

なお、PLA₂ アイソザイムの命名及び略称表記法に関する基準や規則が存在

4
せず、研究グループ間で名称が異なることもある。そこで、本論文では混乱を避けるために、本論文で使用するハブ毒 PLAL アイソザイムの命名及び略称表記法は以下に従うこととする。

1. コードされるアミノ酸配列の構造がIIA型の分泌型 PLAL に分類され、3章7節で後述するA, B 及び C 型の遺伝子構造をもつクサリヘビ科ヘビの PLAL アイソザイムを毒 PLAL アイソザイムと総称する。

2. A型の遺伝子構造をもつクサリヘビ科ヘビの PLAL アイソザイムの中でも毒性の発現が少なく、毒腺以外の体細胞組織で発現し、採食・捕食の際に明确に毒として機能していないとされる PLAL を非毒性 (体細胞性) PLAL と呼ぶ。

3. 遺伝子 (DNA, RNA) はイタリック、タンパク質はローマンで表記し、遺伝子名とタンパク質名の前に生物種の学名に由来する略称をイタリックで付す。遺伝子名及びタンパク質名は基本的に我々の研究グループで使用されている名称を用いるが、他の研究グループによって名付けられた別名がある場合には四角括弧“[]”内に併記する。

4. 前項に記した生物種の学名に由来する略称は属名のアルファベット表記の頭文字、種小名の頭文字を組み合わせて表記し、以下のように表記する。Pe, Protobothrops elegans; Pf, Protobothrops flavoviridis; Pt, Protobothrops tokarensis; Oo, Ovophis okinavensis.

5. 同定されてきたハブの棲息島を遺伝子名とタンパク質名の後に記される丸括弧“[]”内に以下に示すように島名に由来する略称を記し、由来する島が異なるがコードされるアミノ酸残基が同一であるものは島名に由来する略称をコンマで区切り、同括弧内に併記する。 (A), Amami-Oshima island; (I), Iheya island; (K), Kume island; (O), Okinawa island; (T), Tokunoshima island.

6. 基本的にタンパク質名に準じて遺伝子名を定義するが、pgPLAL 1a, pgPLAL 2a, pgPLAL 1b, pgPLAL 2b, PfPLAL 1, PfPLAL 2, PfPLAL 3, PfPLAL 4, PfPLAL 5, PfPLAL 6, PfPLAL 7, PfPLAL 8 などの遺伝子ライブラリから獲得され、機能性に関連が無く、発見番号などが由来となったクローン名を持つ遺伝子に関しては四角括弧“[]”内にそのクローン名や別名を併記する。また、それらの推定される翻訳産物について記述する場合は、そのクローン名及び別名及びをローマンで表記する。
3. 序論
3-1. ヘビに関する生物学的知見

ヘビは爬虫綱有鱗目ヘビ亜目 (Reptilia: Squamata: Serpentes)に分類される爬虫類の総称であり、細長く四肢の無い形態的特徴を有しており、統合分類学情報システムであるITIS (Integrated Taxonomic Information System)の2015年時点の分類によると盲蛇下目 (Scolecodphidia) 3科、真蛇下目 (Alethinophidia) 20科の2下目23科からなる(Figure 1) (Integrated Taxonomic Information System, 2015)。いわゆる“毒ヘビ”と定義されるヘビは真蛇下目ナミヘビ上科 (Caenophidia)にのみ存在し、クサリヘビ科 (Viperidae), コブラ科 (Elapidae), モールバイパー科 (Atractaspidae), そして一部のナミヘビ科 (Colubridae)に属するヘビが毒ヘビとして知られている。クサリヘビ科はクサリヘビ亜科 (Viperinae), マムシ亜科 (Crotalinae), ナイトアダー亜科 (Causinae), コブラバイパー亜科 (Azemiopinae)の4亜科から構成され、本科ヘビによる咬傷は浮腫や筋壊死を伴った重篤な出血性障害を引き起こすことから、クサリヘビ科ヘビの毒は一般に出血毒と呼ばれている。ナミヘビ科毒ヘビの毒は主に血液凝固系に作用し、クサリヘビ科ヘビの毒に比べ、より強い出血障害を引き起こす。一方、コブラ科ヘビの毒は神経伝達を阻害し、骨格筋弛緩・収縮させる障害を引き起こすことから神経毒と呼ばれている。しかし、実際には出血毒を持つとされる種の毒にも神経毒の成分が一部含まれており、逆に神経毒を持つとされる種の毒にも出血毒の成分が一部含まれていることが分かってきている (Borja-Oliveira et al., 2007; Chijiwa et al., 2003a; Faiz et al., 2010; Gutiérrez et al., 1992)。ヘビ毒は多彩な生理活性物質の複雑な混合物からなり、その構成成分や各成分比率が種の棲息環境や遺伝子流動などによって大きく異なることが分かっており (Casewell et al., 2009; Lomonte et al., 2014, 2012)。ヘビ毒の機能的多様性を生み出す主な要因は食餌の差異であると考えられている (Barlow et al., 2009; Daltry et al., 1996; Li et al., 2005)。ヘビ毒は捕食対象の抵抗力を低下させ摂餌の成功率を上げると共に、摂食後に対象を効率的に分解し、消化活動を助けるといった多面的な機能を有し、環境の変化に適応する過程で、遺伝的多様性を獲得し、生存に有利に働いていると考えられる。

有毒種ヘビの毒は唾液腺から独自に分泌・形成された毒腺といわれる器官で生産・貯蔵されており、生産・貯蔵された毒は上顎に存在する特徴的な構造を持つ牙を介して対象の体内に注入される(Figure 2) (Jackson, 2003, 2002; Nagy et
al., 2013; Vonk et al., 2008)。一般に多くのコブラ科の毒は上顎の前歯に存在する溝状構造もしくは管状構造を通じて対象の体内に注入され、一部の種では毒液を対象に向けて発射することも可能であり、このような構造を持つヘビは前歯類と呼ばれている。一方で、ほとんど全てのクサリヘビ科、一部のコブラ科、そしてモールバイバー科のヘビの上顎には可動性の前歯があり、その歯は開口時には後方に向けかつて水平に近い状態に倒れているが、開口することで牙が下顎に突き刺さるように垂直方向に立ち上がることができる。毒液は可動性の前歯の内部に存在する管状構造を通じて対象の体内に注入される。このような構造を持つヘビは管歯類と呼ばれている。そして、ナミヘビ科の中の有毒種ヘビは上顎後方に存在する牙の付け根もしくは溝状構造から毒液を送り出し、後歯類と呼ばれている。また、有毒種のナミヘビ科ヘビの中にはヒキガエルを好んで捕食することで、ヒキガエルに含まれるプロトキシンを摂取・貯蔵し、毒として分泌・再利用しているものもある（Hutchinson et al., 2007）。

興味深い特徴を有するヘビの生態とその進化を解き明かそうとする動きは次世代シークエンサーの発展と共に近年急速に発展しており、2015年現在ではニシキヘビ科（Pythonidae）のピルマシキヘビ（Python molurus bivittatus）（Castoe et al., 2013）、インドニシキヘビ（Python molurus molurus）（Castoe et al., 2011a）、クサリヘビ科のヨーロッパクサリヘビ（Vipera berus berus）（Liu et al., 2014）、サザンスプルックドラトルスネーク（Crotalus mitchellii pyrrhus）（Gilbert et al., 2014）、コブラ科のキングコブラ（Ophiophagus hannah）（Vonk et al., 2013）、ナミヘビ科のコモンガータースネーク（Thamnophis sirtalis）（Warren and Wilson, 2015）、コーンスネーク（Pantherophis guttatus）（Ullate-Agote et al., 2014）の7種のヘビの全ゲノムプロジェクトが進行中である。

3-2. 日本に生息するクサリヘビ科ヘビ
現在、日本には特定外来生物として指定され、定着・帰化が確認されているタイワンハブ（Protobothrops mucrosquamatus）を除くハブ属（Protobothrops）3種、ヤハブ属（Oophis）1種、マムシ属（Gloydius）2種、計6種類のクサリヘビ科マムシ亜科のヘビが棲息し、その棲息地は特異な地理的分布を示す（Figure 3）。

ハブ属のホンハブ（Protobothrops flavoviridis）は奄美大島以南の奄美群島から
沖縄諸島まで分布し、現在までに奄美大島、加計呂麻島、請島、与路島、徳之島、沖縄本島、伊平屋島、野湊島、屋我地島、古宇利島、伊江島、水納島、瀬底島、渡名喜島、久米島、奥端島、渡嘉敷島、儀志布島、城島、黒島、伊計島、宮城島、平安座島、浜比嘉島、浮原島、蔵地島で棲息が確認されている（Okinawa Prefectural Institute of Health and Environment, 2011）。体長は 100~200 cm で日本に棲息する毒ヘビでは最大種、体色は黄白色の地に黒褐色の複雑な模様を呈する個体が多いが、棲息する島間・地域間でその色・模様は大きく異なる。幼蛇のうちにはマウスやトガリネズミなどの小型哺乳類の他にも爬虫類や両生類も食餌とするが、成蛇になるとラットやマウスなどの哺乳類を好んで捕食するようになる（Mishima, 1966a, 1966b; Nishimura et al., 1991）。ホンハブの毒は分泌液、そしてその毒性が共に極めて高く、一回の排毒量は（乾燥重量）300 mg に達し、マウスの腹腔内投与時の LD₅₀ 値はヒメハブの毒に比べ 3.75 倍ほど低く、咬傷時には重篤化しやすい（Mitsuhashi et al., 1961）。また、気温も荒いため人に対する咬傷被害も多い。これまで当研究室や柴田らによって行われた分子遺伝学的調査（unpublished）によると、奄美群島に棲息するホンハブと沖縄諸島に棲息するホンハブの遺伝的距離よりも、奄美群島に棲息するホンハブとトカラハブの遺伝的距離の方が近いということが指摘されている。

トカラハブ（Protobothrops tokarensis）はトカラ列島の宝島と小宝島にのみ棲息し、両島は日本におけるハブ属ヘビ分布の北限地である。体長は 60~100 cm であり、淡褐色・灰色の地に暗褐色の稜円形の斑紋が並ぶ体色を示す個体が多く、黒色型個体も良く見られる。ネズミ等の小型哺乳類、小型鳥類、爬虫類、両生類などを食餌とし、毒の毒性はホンハブに比べると非常に弱いことが知られている。しかしながら近年、当研究室や柴田らによって行われた分子遺伝学的調査（unpublished）を始めとして、トカラハブと奄美大島のホンハブは非常に近縁な系統であり、その 2 種を同種として扱って良いかもしれないとの提案もなされている。

サキシマハブ（Protobothrops elegans）は与那国島、波照間島を除く八重山諸島に分布し、石垣島、西表島、外離島、内離島、小浜島、竹富島、黒島、嘉弥真島に棲息し、沖縄本島には持ち込まれた個体が定着・帰化している（Okinawa Prefectural Institute of Health and Environment, 2011）。体長 60~120 cm で茶褐色・灰褐色の地に暗褐色の斑紋が並ぶ体色を示す個体が多い。ネズミ等の小型哺乳類、小型鳥類、爬虫類、両生類などを食餌とし、一回の排毒量は（乾燥重量）124 mg
程度で、マウスの腹腔内投与時のLD₅₀値はホンハブの毒に比べ1.2倍ほど高く、ホンハブの咬傷と比べると重篤な障害を引き起こすことは無いとされている（Mitsuhashi et al., 1961）。

ヤマハブ属（*Ovophis*）のヒメハブ（*Ovophis okinavensis*）は奄美大島以南の奄美群島から沖縄諸島まで分布し、奄美大島、加計呂麻島、諸島、与路島、徳之島、沖縄本島、伊平屋島、野甫島、具志川島、伊是名島、屋那覇島、屋我地島、伊江島、渡名喜島、久米島、座間味島、安里島、阿嘉島、慶留間島、外地島、屋嘉比島、久場島、渡嘉敷島、儀志布島、城島、黒島、前島、仲島、端島で棲息が確認されている（Okinawa Prefectural Institute of Health and Environment, 2011）。全長30~80 cmで茶褐色・灰白色の地に暗褐色の斑紋が並ぶ体色を示し、胴回りの太い形態的特徴を有する。水辺で良く見られ、幼・成蛇共にカエルを好んで捕食しており（Kadota, 2011; Mori and Toda, 2011; Mori et al., 2002）。一回の排毒量（乾燥重量）22.2 mg程度であり、マウスの腹腔内投与時のLD₅₀値はホンハブの毒に比べ3.75倍ほど高く、ホンハブの咬傷と比べると重篤な障害を引き起こすことは無いとされている（Mitsuhashi et al., 1961）。

マムシ属（*Gloydius*）のニホンマムシ（*Gloydius blomhoffii*）はトカラ列島以南の南西諸島と対馬を除く日本全域に棲息し、体長は45~65 cmで赤褐色・暗褐色の地に暗色の鋲型の大きな斑紋が並んだ胴回りの太い形態的特徴を有する。舌色は暗褐色である。主にカエルやネズミを食し、ハブ属のヘビに比べると牙も小さく、毒液の注入量も少ないが、その毒性はホンハブに比べ遥かに強い（Homma et al., 1967; Kosuge, 1968）。

ツシママムシ（*Gloydius tsushimaensis*）は対馬にのみ棲息しており、全長40~60 cmで灰褐色から赤褐色の地に淡黑色の鋲型の小さな斑紋が並んだ胴回りの太い形態的特徴を有する。舌色は淡紅色である。大陸系種の特徴を有するマムシであり、主にカエルやネズミを食し、その気性はニホンマムシと比べると非常に神経質で攻撃的である。

一般に、クサリヘビ科ヘビの毒は主にホスホリパーゼA₂（PLA₂）、セリンプロテアーゼ（SP）、メタロプロテアーゼ（MP）、高システインリ分泌タンパク質（CRISP）、C型レクチンタンパク質（CTL）、L-アミノ酸オキシダーゼ（LAO）、神経成長因子（NGF）、ディスインターデリン（ADAM）などからなり、これらをコードする遺伝子は多くの場合、遺伝子重複によって遺伝子コピー数を増やした多重遺伝子ファミリーを形成し、続く多変異の蓄積によってアイソザイムの機能的
多様性を獲得している（Figure 4）（Aird et al., 2013; Caswell et al., 2009; Francischetti et al., 2004; Oda-Ueda et al., 2004; Rodrigues et al., 2012; Rokyta et al., 2013）。多彩な生理活性物質の複雑な混合物からなるヘビ毒は、ヘビ種間のみならず、種の棲息環境でもその構成成分や各成分比率が異なっています。その違いを生み出す理由としては、毒成分をコードする遺伝子の変異や、その構成と割合の変化が個体の生命活動に深刻ではなく致死性の影響を及ぼさない、つまり機能的制約が弱い、ということに加えて各棲息環境における捕食対象や採餌条件の変化に従って、生存に有利な集団が自然選択で生き残った適応進化の結果であると考えられている（Barlow et al., 2009; Daltry et al., 1996; Li et al., 2005）。隔絶された環境に棲息する生物はその環境に適応した独自の進化を遂ることが知られており、特に島嶼環境は地理的隔離によって異所的種分化が促進され、各集団の多様化が大きいとされる。日本南西諸島に棲息するハプ属ヘビの生態学的・進化学的な調査は、生物の進化と環境適応、遺伝子・ゲノムの進化、さらには近年新たに提唱されている“Venomics”と呼ばれる包括的な毒素学領域の理解を深める上で貴重な情報を提供すると期待される。

3-3. ホスホリバーゼ A₂ (PLA₂) の構造と機能

ホスホリバーゼ A₂ (Phospholipase A₂, PLA₂) [EC 3.1.1.4] は広義にはグリセロリン脳質の sn-2 位のエステル結合を加水分解して脂肪酸とリゾリン脳質を産生する酵素群の総称である（Figure 5）（Dijkstra et al., 1983, 1981）。PLA₂のよく知られた機能の一つとしてプロスタグランジン類、トロンボキサン類、ロイコトリエン類など一連の脂質メディエーター生成の初期段階の制御が挙げられる。PLA₂は細胞膜を構成するホスファチジルエタノールアミン、ホスファチジルクロリ、ホスファチジリソトールなどのリン脳質からアラキドン酸を遊離させ、その後遊離したアラキドン酸はアラキドン酸カスケードで呼ばれる代謝経路でシクロオキシゲナーゼおよびプロスタグランジン類やトロンボキサン類に変換される一方でリポキシゲナーゼおよびロイコトリエン類に代謝され、合成されたエイコサノイドは生体内での様々な生理機能に関与することが分かっている（Figure 6）（Balsinde et al., 2002; Dennis et al., 2011; Korotkova and Jakobsson, 2014）。

近年のヒトゲノム計画をはじめとする大規模な遺伝子情報の集積により、喃
乳類ゲノムには30以上のPLA₂遺伝子が含まれていることが明らかとなった。見出されたPLA₂は、アミノ酸配列に基づいて現在までにI型からXVI型までの16グループに分類され、それらのグループは機能の特徴に基づいて分泌型PLA₂（secretory PLA₂, sPLA₂）、細胞質型PLA₂（cytosolic PLA₂, cPLA₂）、Ca²⁺非依存型PLA₂（Ca²⁺-independent PLA₂, iPLA₂）、血小板活性化因子アセチルヒドラーゼ（Platelet-activating factor acetylhydrolase, PAF-AH）、リソソーム型ホスホリパーゼA₂（Lysosomal phospholipase A₂, LPLA₂）、アディポサイト型ホスホリパーゼA₂（adipose-specific PLA₂, AdPLA₂）の6つに大別される（Table 1）（Dennis et al., 2011）。特に分泌型PLA₂に対する研究は歴史が古く、当初はコブラ科ヘビの毒から見出されるN末端のプロペプチドの限定分解によって活性型へ変換される特徴を持つ分泌型PLA₂はI型、クサリヘビ科ヘビの毒から見出されるC末端に突出配列を持つ分泌型PLA₂はII型（Heinrikson et al., 1977）、加えてハチ毒から見出される分泌型PLA₂はIII型と定義されていた（Davidson and Dennis, 1990）。1980年代になるとヒトをはじめとする哺乳動物からもI型に相同なPLA₂が膵臓消化液から、II型に相同なPLA₂が炎症侵出液からそれぞれ精製され、それらの構造が決定された（Fleer et al., 1978; Hara et al., 1989; Kramer et al., 1990; Seilhamer et al., 1989; Verheij et al., 1983）。そして、それら哺乳動物由来の2つのPLA₂はそれぞれIB型、IIA型と新たに分類、定義され、さらにコブラ科ヘビの毒由来のPLA₂はIA型、クサリヘビ科アフリカアダー属（Bitis）の毒由来のPLA₂はIIB型と新たに定義された（Davidson and Dennis, 1990）。さらに、近年の次世代シークエンサーの急速な発展に伴う様々な生物種の大規模な遺伝子情報の集積を背景に、現在までに分泌型PLA₂は一次構造の違い（pancreatic loop構造、N末端及びC末端の延長配列）、分子内ジスルフィド結合を構成するCys残基の数と位置の違い、そして特定組織での局在などに従って、18グループ（IA, IB, IIA, IIB, IID, IIE, IIIF, III, IV, IX, X, XIA, XIB, XIIA, XIIB, XIIIA, XIIIB, XIV）に細分されている（Table 2, Figure 7）（Dennis et al., 2011; Schaloske and Dennis, 2006）。特に、ヒト種をはじめとする哺乳類ゲノムに共通してコードされているのは、11グループ（IB, IIA, IIC, IID, IIE, IIIF, III, V, X, XIA, XIB, XIIB, XIIIB, XIII, XIV）の分泌型PLA₂であり（Dennis et al., 2011; Murakami et al., 2011, 2010; Schaloske and Dennis, 2006）。IB型PLA₂は主に膵臓で発現し、食餌のリン脂質の消化に関与することから膵PLA₂とも呼ばれている。前駆体タンパク質として分泌されたIB型PLA₂は腸管内でトリプシンによるN末端プロペプチドの限定分解を受けて活性型として機能する。さら
に IB 型 PLA₂は pancreatic loop と呼ばれる特徴的な構造を有している (Huang et al., 1997; Kini, 1997)。一般にコブラ科ヘビの毒に含まれる PLA₂は IA 型に分類され、そのアミノ酸列は IB 型に非常に高い相同期性を示し、活性部位の α-ヘリックス領域から β-wing 領域の間に特徴的な elapid loop 構造を有している (Alape-Girón et al., 1999)。IA 型 PLA₂は主に神経毒として機能し、運動神経終末への結合、変性によって、シナプス小胞の枯渇及びアセチルコリン放出阻止を引き起こす (Dixon and Harris, 1999; Harris, 2004; Prasampun, 2005; Ranawaka et al., 2013; Rigoni, 1999; Rosso et al., 1996)。IIA 型 PLA₂は慢性関節リウマチの患者滑膜細胞を破壊に関与しているとされる (Buckland et al., 2000; Foreman-Wykert et al., 1999; Grönroos et al., 2002)。アフリカアダー属 (Bitis) を除くクサリヘビ科ヘビの毒にはこの IIA 型の PLA₂が多く含まれており、クサリヘビ科ヘビの毒 PLA₂は一次構造がわずかに異なる構造をもつ分子群、アイソザイム系を構成する (Chijiwa et al., 2012; Nakashima et al., 1995, 1993; Ohno et al., 2002)。IIA 型のヘビ毒 PLA₂は 49 位のアミノ酸残基の違いによって大きく [Asp₄⁹] 型と [Lys₄⁹] 型の 2 つに分けられる (Maraganore and Heinrikson, 1986; Maraganore et al., 1984)。49 位のアミノ酸残基は活性部位内に存在し、Ca²⁺ との相互作用に関わっているため、[Lys₄⁹] 型は [Asp₄⁹] 型に比べて PLA₂活性が低い (Dhillon et al., 1987; Kihara et al., 1992; Yamaguchi et al., 1997)。一般にこれらの IIA 型 PLA₂は筋毒性として定義されているが (Lomonte and Gutiérrez, 2011; Mora-Obando et al., 2014)、その機能は筋線維や筋収縮などの筋細胞に対する障害のみならず、神経毒性、溶血毒性、浮腫誘導活性などの機能も発揮することが報告されている (Chijiwa et al., 2003a; Ferreira et al., 2013; Petrovič et al., 2004; Yamaguchi et al., 2001)。PLA₂活性の強い [Asp₄⁹] PLA₂は細胞膜のリン脂質を加水分解することで細胞への障害を引き起こすのに対して、触媒活性の低い [Lys₄⁹] PLA₂は自身の C 末端領域を介した細胞膜との相互作用で細胞に障害を与えるとされ、さらには [Asp₄⁹] PLA₂ が細胞膜のリン脂質を加水分解した場所に [Lys₄⁹] PLA₂ が入り込み、2 つの PLA₂が協調して細胞に強い障害を引き起こすとも報告されている (Andrião-Escarso et al., 2000; Lomonte and Gutiérrez, 2011; Lomonte and Rangel, 2012; Montecucco et al., 2008; Mora-Obando et al., 2014)。

ヘビ毒に含まれている PLA₂に関する研究と解析は 1980 年代に盛んに行われ、
構造解析や生理機能解析が広く行われてきたが、他のグループの分泌型PLA₂に関してはトランスジェニックマウスによる機能亢進及び阻害による試みや免疫染色による組織内分布同定などが行われているものの、生体内での明確な生理機能や生体内基質及び酵素反応生成物に関しては現在でも不明とされる部分が多く残されている（Dennis et al., 2011; Murakami et al., 2015, 2011）。

3-4. ハプ属ヘビより単離されたPLA₂アイソサイム

IIA型及びIIB型の分泌型PLA₂に分類されるクサリヘビ科ヘビの毒PLA₂は、これまでに多数研究されており、その多くが119-124アミノ酸残基からなることが明らかとされている（Brunie et al., 1985; Holland et al., 1990; Renetseder et al., 1985; Suzuki et al., 1995）。以下に、日本南西諸島に棲息する4種のクサリヘビ科マムシ亜科ヘビから見出されたPLA₂分子の特徴を紹介する。

3-4-1. ホンハブ（Protobothrops flavoviridis）

当初、当研究室では徳之島のホンハブを中心に、その毒に含まれるPLA₂アイソサイムの体系的な調査研究が行われてきた。徳之島のホンハブ粗毒からは122アミノ酸残基からなる6つの異なるPLA₂アイソサイム（PfPLA₂, PfPLA-A, PfPLA-B, PfPLA-N, PfBPI, PfBPII）を単離・特徴付け、それらは全てIIA型の分泌型PLA₂であることを明らかとした。さらに、それらアイソサイムの一次構造とそれに関連する生理活性に従って、中性[Asp⁴⁹]タイプであるPfPLA₂（pI 7.9, 低いリン脂質分解活性・筋壊死活性）（Kihara et al., 1992; Oda et al., 1990）、塩基性[Asp⁴⁹]タイプであるPfPLA-AとPfPLA-B（pI 8.5と8.6, 淤腫誘導活性）（Yamaguchi et al., 2001）、高塩基性[Asp⁴⁹]タイプであるPfPLA-N（pI 10.3, 神経毒活性）（Chijiwa et al., 2003a）、[Lys⁴⁹]タイプであるPfBPIとPfBPII（pI 10.2と10.3, 極めて高いリン脂質分解活性・高い筋壊死活性）（Kihara et al., 1992; Liu et al., 1990; Yoshizumi et al., 1990）の4つのサブタイプに分類できることを明らかにした（Figure 8）（Chijiwa et al., 2003a）。加えて、徳之島ホンハブ毒腺cDNAライブラリーやゲノムライブラリーから、PfPL-X', Pf[Thr³⁷]PLA₂, PfpgPLA 1a, PfpgPLA 2a, PfpgPLA 1b, PfpgPLA 2bといったPLA₂アイソサイムをコードするcDNAや遺伝子を同定した（Figure 8, 9）（Nakashima et al., 1993; Oda et al., 1990; Ogawa et al., 1992）。
奄美大島のホンハブの毒種からは、PfPLA2 (Chijiwa et al., 2003b), PfPLA-B' (Chijiwa et al., 2003b), PfPLA-N (Chijiwa et al., 2003a), PfBPI (Chijiwa et al., 2003b), PfBPII (Chijiwa et al., 2003b), PfBPIII (Murakami et al., 2009), PfPL-X (Kini et al., 1986) が同定され, それらをコードする遺伝子も単離されている (Figure 10)。さらに, 奄美大島のホンハブからは 8 つの IIA 型の PLA2 アイソザイム遺伝子が並んだ約 45 kbp の炭素ドクローンが単離され, 完全長の塩基配列が決定された (Chijiwa et al., 2012; Ikeda, 2011; Ikeda et al., 2010)。各 PLA2 アイソザイム遺伝子は, PfpgPLA 1b をコードする PfPLA 8, PfPLA2 [PfpgPLA 1a] をコードする PfPLA 7, PfBPII をコードする PfPLA 2, PfPLA-N をコードする PfPLA 4, PfPLA-B をコードする PfPLA 5 及び新規の PLA2 をコードする PfPLA 1, PfPLA 3, PfPLA 6 とそれぞれ名付けられた (Figure 11) (Chijiwa et al., 2012; Ikeda, 2011; Ikeda et al., 2010)。

沖縄本島及びその属島である伊平屋島・久米島に棲息するホンハブからは PfPLA2, PfPLA-N, PfPL-Y の 3 つの PLA2 アイソザイムがそれぞれ単離され, その一次構造が決定された (Figure 12) (Chijiwa et al., 2013b, 2003a, 2003b)。

奄美大島, 徳之島, 沖縄本島, 伊平屋島, 久米島のホンハブの毒タンパク質のカラムクロマトグラフィー溶出プロファイルを比較したところ島嶼特異的であることが示され (Figure 13), 特に, [Lys49]PLA2 アイソザイムのサブタイプのレパートリーは島嶼間での差が著しく, 徳之島のホンハブ毒では BPI と BPII に相当する 2 つのピークのみが確認できるのに対して, 奄美大島のホンハブ毒では BPI, BPII 及び BPIII に相当する 3 つピークが確認できる。一方, 沖縄本島及びその属島である伊平屋島及び久米島のホンハブ毒では[Lys49]PLA2 アイソザイムが含まれるピークが一切存在していなかった。このことはゲノミック PCR とサザンプロット解析とサブタイプ特異的ポリモフィズム解析によって, 沖縄諸島のホンハブでは BPI と BPII をコードする遺伝子が融合し, 偉遺伝子化してしまったためであることが示された (Figure 14) (Chijiwa et al., 2000)。

3-4-2. トカラハブ (Protobothrops tokarensis)

トカラハブ粗毒からは, Tsai らによって 4 つのそれぞれ異なる PLA2 アイソザイムが同定されていたが, いずれも N 末端の 29 アミノ酸残基が解読されたのみ
であった(Tsai et al., 2004)。そこで、当研究室で改めてトカラハブの毒タンパク質の分画と解析及び毒腺cDNAの解析を行い、中性[Asp49]タイプであるPtPLA2、塩基性[Asp49]タイプであるPtPLA-B、強塩基性[Asp49]タイプであるPtPLA-N、そして[Lys49]タイプであるPtBPIの4つであることを明らかとした。これらのN末端のアミノ酸配列はTsaiらが報告したそれらとそれぞれ一致していた(Figure 15)(Hayama, 2005; Yatsui, 2006)。

また、トカラハブのゲノムからもPfPLA6とオーソログと考えられる祖先型[Asp49]PLA2 : PtPLA6(Masuda, 2011)、IB型の瞳PLA2(Irie, 2009; Nakasone, 2006)をコードする遺伝子も同定されている。

3-4-3. サキシマハブ(Protobothrops elegans)

サキシマハブの粗毒からは全体のアミノ酸配列が[Lys49]PLA2アイソザイムとほぼ一致するアイソザイムが2つ、PeBP(R)IとPeBP(R)II(pls 9.2と9.3、筋壊死活性・浮腫誘導活性)が同定されていたが、この2つのアイソザイムでは共通して49位のアミノ酸がアラニニに置換しており、全アミノ酸残基数も121であることが明らかにされた(Figure 16)(Chijiwa et al., 2006)。さらにサキシマハブ毒腺cDNAの解析から、中性[Asp49]タイプであるPePLA2をコードする転写産物も見出された(Chijiwa et al., 2006)。また、サキシマハブのゲノムからもPfPLA6のオーソログと考えられる祖先型[Asp49]PLA2 : PePLA6(Masuda, 2011)、IB型の瞳PLA2(Chijiwa et al., 2013a; Irie, 2009; Nakasone, 2006)をコードする遺伝子も同定されている。

3-4-4. ヒメハブ(Ovophis okinavensis)

信久らによる毒腺cDNAライブラリーメ及ゲノムライブラリーローの探索により、ヒメハブには毒PLA2アイソザイムをコードする遺伝子がOoPLA2-o1、OoPLA2-o2及びOoPLA2-o3の3つが存在することが示されていた(Figure 17)(Nobuhisa et al., 1996)。一方で、Tsaiらによるヒメハブの粗毒素に対するカラムクロマトグラフィーによってもOoPLA2-o1が単離・同定されている(Tsai et al., 2012)。ヒメハブで見つかるIIA型PLA2をコードする3遺伝子のうち、恒常的に発現しているのはOoPLA2-o1のみであり、OoPLA2-o2とOoPLA2-o3は仮遺伝子化していると推測されている(Nobuhisa et al., 1996; Tsai et al., 2012)。さらに、ヒメハブゲノムからはIB型の瞳PLA2(Irie, 2009; Nakasone, 2006)をコードする遺伝子も同定されてい
る。

3-5. 生物進化のプロセスと現代の進化論

生物の進化とは生物個体群の性質が世代を経るにつれて累積的に変化する現象のことを示し、個体群内の遺伝的変化と個体群内の遺伝子頻度の変化が進化と定義されることもある。

生物の進化を説明する上で根幹をなす“自然選択説” (Natural selection) はチャールズ・ダーウィンによって提唱され、現在では自然環境が生物に無目的に生じる突然変異を選別し、進化に一定の方向性を与える理論として知られている。自然選択説は適者生存 (Survival of the fittest) の概念に基づくことから自然淘汰説とも呼ばれ、自然選択による進化は適応を生み出すとされている。一方、木村らによって提唱された“中立進化説” (Neutral theory of molecular evolution) は分子レベルでの遺伝子の突然変異はそのほとんどが自然選択に対して有利でも不利でもなく中立的であり、それ以外はほとんどが有害な変異で有利な変異は稀であり、突然変異と遺伝的浮動が進化の主な要因であるとする理論のことである (Kimura and Ohta, 1971; Kimura and Ota, 1974; Kimura, 1969, 1968)。中立的な突然変異を起こした遺伝子の集団への広まりに伴う良さ (Survival of the luckiest) が重要であるとされ、中立的な進化は前適応を生み出す原因であると考えられている。しかし、単純な中立説では生物集団の大きさに関わらずタンパク質の多様性がほぼ一定であることと、生物の世代時間と突然変異率の問題を解決することができなかったため、太田らによって“ほぼ中立説” (Nearly neutral theory of molecular evolution) という概念が新たに提唱された (Ohta, 1973)。これは自然選択と遺伝的浮動の両効果のバランスが進化現象を司っているとするもので、自然選択の強さは集団の大きさに影響を受けるという予測に基づいて、有害な変異と中立的な変異の間に生存に少しでは不利な弱有害変異“ほぼ中立な変異”という概念を導入した理論である。ほぼ中立説では集団が大きいほど自然選択が有効に働いている変異は集団から除かれることができるし、集団が小さいと遺伝的浮動により中立な変異をもった個体が集団を担うようになって集団の遺伝子の置換速度が高まるとされ、単純な中立進化説だけでは説明できなかった問題を解決している。

自然選択説と中立進化説はそれぞれ対立した理論ではなく、現在では自然選
択読、中立進化説、ほぼ中立分子生物学及び集団遺伝学等の考えを取り入れた説が広く受け入れられ、進化、種分化の一連のプロセスが理解されている。現在では、ほとんどの変異はほぼ中立的であり、その変異は次世代への伝伝を経て、遺伝的浮動による集団への固定・定着、集団が生殖的隔離を受けることで種分化が生じるとされている。

3-6. 加速進化

1つのアミノ酸は3つのヌクレオチドのトリプレット単位からなるコードされ、コードのそれぞれの座標には、塩基置換が生じてもアミノ酸に変化を引き起こさない座標: 同義座標 (Synonymous site), とアミノ酸に変化を引き起こす座標: 非同義座標 (Non-synonymous site), がある。同義座標あたりの同義置換数は K_s または d_s, 非同義座標あたりの非同義置換数は K_A または d_A として、近似法 (Li et al., 1985; Nei and Gojobori, 1986; Zhang et al., 2006), もしくは尤法 (Goldman and Yang, 1994; Posada, 2003) に基づいたアルゴリズムを用いて算出される。そして、K_A/K_s の値が 1 より大きい場合は正の自然選択 (Positive selection) が、1 より小さい場合は負の自然選択 (Negative selection) が、1 の場合は中立的な選択が、それぞれ働いたと推測される (Anisimova et al., 2001; Yang and Chen, 2012; Yang and Nielsen, 2000; Yang, 2006)。一般的に、機能的に重要な分子や領域は機能的制約が強くため置換速度が遅い傾向があり、逆に機能的に重要でない分子や領域では機能的制約が低いため置換速度が速い傾向がある。特に、タンパク質をコードする遺伝子や領域での同義置換速度は非同義置換速度よりも圧倒的に速く、加えて、偽遺伝子やイントロンなどの領域での塩基置換速度はさらに速いことが分かっており、これらの観察は中立説を支持している。ところが、ヘビ類の Kunitz 型セリンプロテアーゼインヒビター (Doley et al., 2009), ハブ属ヘビの IIA 型毒 PLA2 (Kini and Chan, 1999; Nakashima et al., 1995, 1993; Nobuhisa et al., 1996; Ogawa et al., 1996; Ohno et al., 2002), Fetuin (Tanaka et al., 2013), ハブ毒セリンプロテアーゼ (Deshimaru et al., 1996), コブラ科ヘビの Three-finger toxin (3FTx) (Gong et al., 2000), 魚類のガレチン (Ogawa et al., 2002, 1999), イソギンチャクの Blood depressing substance (BDS) (Nicosia et al., 2013), イモガイの毒ペプチド (Olivera et al., 2012) に代表される分子では、後述するが、これらは多重遺伝子由来する複数のアイソザイムを有し、アイソザイム間比
3-7. クサリヘビ科ヘビの IIA 型毒 PLA2 アイソザイムをコードする遺伝子とそのゲノム構造

クサリヘビ科ヘビの IIA 型毒 PLA2 アイソザイムはおよそ 2 kbp の遺伝子にコードされているが、71 個の既知クサリヘビ科ヘビの IIA 型毒 PLA2 アイソザイム遺伝子の塩基配列アラインメント解析から、それら全てが 4 エクソン、3 イントロンからなる共通構造をしており、第 1 エクソンと第 2 イントロンの特徴的な 3 つのインデル (Insertion-Deletion, INDEL) に従って A, B, C の 3 タイプに分類できることができる事が示された (Figure 19) (Chijiwa et al., 2012)。この特徴的なインデルは短鎖散在反復配列 (Short interspersed nuclear element, SINE) に由来するものであると考えられ、S1EX 1, S2EX 1, 及び SINT 2 と名付けられた (S2EX 1 は S1EX 1 を内包している)。A タイプの構造をもつ遺伝子は PfPLA6, OoPLA2-α2 などであり、それらは B 及び C タイプの遺伝子で見られるような SINT 2 構造が見られず、毒腺での発現が見られないもしくは極めて低いことから、遺伝子としては「サイレント」な IIA 型毒 PLA2 の祖先型にあたるのではないかと推定された (Chijiwa et al., 2012)。加えて、S1EX 1 が欠失している構造をもつ B タイプの遺伝子はクサリヘビ亜科に属するヘビからのみ見出されていたり、一方で S2EX 1 が欠失している構造をもつ C タイプの遺伝子はマムシ亜科に属するヘビからのみ見出されることも示され、マムシ亜科に属するホンヘブ、トカラハブ、サキシンマハブ、そしてヒメハブで見つかれた全てのハブ毒 PLA2 遺伝子が、「サイレン
「な祖先型IIA型PLA2をコードするPfPLA6（ホンハブ）、PtPLA6（トカラハブ）、PePLA6（サキシマハブ）及びOoPLA2-o2（ヒメハブ）を除く、このCタイプ構造を持つことも明らかとなった。

さらに、日本南西諸島のクサリヘビ科ヘビのIIA型毒PLA2遺伝子はゲノム上でタンデムに並んで存在することが見出されてきた。まず、徳之島のホンハブでは2つのゲノム断片にPfpgPLA1aとPfpgPLA1bが、PfpgPLA2aとPfpgPLA2bが連なることが示された（Figure 9）（Nakashima et al., 1993）。奄美大島のホンハブゲノム約45kbpには8つのIIA型毒PLA2遺伝子がタンデムに並んでいることも示された（Figure 11）（Chijiwa et al., 2012; Ikeda, 2011; Ikeda et al., 2010）。その上、ホンハブゲノムに対するサザンプロット解析からは毒PLA2遺伝子がハイブロイドあたり16~32コピー存在し、それらがタンデムに連なり並んでいること（Nakashima et al., 1993）、FISH解析からはホンハブ毒PLA2遺伝子がマイクロ染色体上の異なる2つの遺伝子座に局在することが示された（Ikeda et al., 2010）。一方ヒメハブでは、サザンプロット解析からOoPLA2-o1、OoPLA2-o2、及びOoPLA2-o3の3つのPLA2アイソサイム遺伝子がタンデムに並んでおり、ホンハブのように長大なクラスター構造を形成しているわけではないことが示唆されている（Figure 17）（Nobuhisa et al., 1996）。

遺伝子が密に連なり合ったクラスター構造を形成する分子機構としては不等交叉による遺伝子重複が考えられ、池田らによってScombと名付けられたヒト組換えホットスポット（recombinational hot spot, RHS）様塩基配列が染色体組換えの足場として機能しているのではないかと指摘されている（Figure 20）（Ikeda et al., 2010）。また、奄美大島のホンハブゲノム断片中には、IIA型毒PLA2遺伝子とリンクして共に多重化したように見えるCR1（Chicken repeat 1）の逆転写酵素を部分的にコードするDNA断片：PcRTF（PLA2gene-coupled reverse transcriptase fragment）が見出されており、毒PLA2遺伝子の多重化への長鎖散在反復配列（Long interspersed nuclear element, LINE）の関与も指摘されている（Ikeda et al., 2010）。

3-8. ゲノム内に散在するレトロトランスポゾン

ヒトをはじめとする多くの生物のゲノムには転移因子（Transposable element）と呼ばれる塩基配列が数多く存在している。ヒトでは全ゲノムの約40%以上を
転移因子が占めるとされる (Hulme et al., 2009; Lander et al., 2001; Xing et al., 2013)。転移因子は2つの大きなクラスに分けられ、転写と逆転写の過程を経るRNA型のものはクラスI、DNA断片が直接転移するDNA型のものはクラスIIに分類されている (Figure 21) (Cordaux and Batzer, 2009)。前者はレトロトランススポゾン(Retrotransposon)、後者はDNAトランススポゾン(DNA transposon)と一般に呼ばれており、その転移機序も大きく異なる (Figure 22) (Levin and Moran, 2011)。クラスIのレトロトランススポゾンはさらに末端の長反復配列 (Long Terminal Repeat)の有無によりLTR型とNon-LTR型に分けられ、さらにLTR型で外殻構成タンパク質であるエンベロープをコードする遺伝子 (Envelope, env)を持つものは特にレトロウィルス (Retrovirus)と呼ばれる。Non-LTR型のレトロトランススポゾンはLINEとSINEに分けられ、LINEは2つの特徴的な読み枠 (open reading frame, ORF)、ORF1とORF2、を持ち、ORF2には転写に必要な逆転写酵素 (Reverse transcriptase, RT)とエンドヌクレアーゼ (Endonuclease, EN)がコードされているのに対して、SINEは転写に必要な逆転写酵素やエンドヌクレアーゼをコードしておらず他の転移因子由来の逆転写酵素やエンドヌクレアーゼを利用することで転写を引き起こす。また、LINEの転写はRNAポリメラーゼIIを介して行われるが、SINEの転写はRNAポリメラーゼIIIを介して行われるなどの違いがある (Ohshima and Okada, 2005)。現在、LINEは構造的な特徴に基づいてR2、Randl、L1、RTE、I、Jockeyの6グループに分けられている (Figure 23) (Kapitonov et al., 2009; Kojima and Fujiwara, 2005; Malik et al., 1999; Permanyer et al., 2006)。

2011年からようやく着手され始めたヘビのゲノムプロジェクト解析データから、ヘビゲノムにはRTEグループのBov-B、JockeyグループのCR1、L2などのLINEが多く含まれていることが明らかとなった (Castoe et al., 2013, 2011a, 2011b)。また、クサリヘビ亜科ヘビのIIA型毒PLA2アイソザイム遺伝子の近傍にはBov-B LINEが存在しているという報告もある (Kordiš and Gubenšek, 1998, 1997; Župunski et al., 2001)。当研究室で解読した奄美大島ホンハブゲノムの約45kbpの断片に含まれている8つのIIA型毒PLA2遺伝子のうち、4つの遺伝子: PfPLA 2, PfPLA 3, PfPLA 4, PfPLA 5, の3'下流にPcRTFと名付けたCR1様LINEが接続しており、IIA型毒PLA2遺伝子とPcRTFが1つのユニット構造を形成していることを見出した (Figure 11) (Ikeda et al., 2010)。Figure 11においてPfPLA 3遺伝子の第1エクソンから第2イントロンまでが欠失し、その5'上流にPfPLA 2
とPcRTF 2が連なった構造は、PfPLA 3とPcRTF 3、PfPLA 4とPcRTF 4、PfPLA 5とPcRTF 5の規則正しく並んだユニット構造を合わせて、毒PLA2遺伝子とPcRTFが1つのユニットとなって転移し、この部位に挿入されたことを推測させる（Figure 24）。さらに、確認された4つの全てのPcRTFはその塩基配列の違いによりPcRTF-Long（PcRTF-L）とPcRTF-Short（PcRTF-S）の2グループに分類できることが示され、PcRTF 3とPcRTF 5はPcRTF-Lグループ、PcRTF 2とPcRTF 4はPcRTF-Sにそれぞれ分類された（Ikeda, 2011; Ikeda et al., 2010）。これら全てのPcRTFは共通して5'UTR及びORF1領域が失われ、切り詰められた5'truncated構造を有していたことから、PcRTF-LとPcRTF-Sの塩基長の差異と5'UTR及びORF1領域の欠失はPcRTF内部の接続配列（connective sequence）とRTドメインに存在する相同断片配列を介した遺伝子変換（gene conversion）によって生み出されたと予測された（Figure 25）（Ikeda et al., 2010）。毒PLA2遺伝子を伴ったPcRTFが1つのユニットとして重複する様子はLINEがその5'側に存在する塩基配列を巻き込むレトロトランスポジション、いわゆる5'Transductionが起きたことを想定させるが（Figure 26）、これは極めて稀な現象であり（Damert et al., 2009; Hulme et al., 2009; Symer et al., 2002; Szak et al., 2002）。毒PLA2遺伝子とPcRTFの重複機構に関してはまだ検証が必要である。

3-9. 研究の目的

クサリヘビ科ヘビのIIA型の毒PLA2をコードする遺伝子は高度に重複し、ゲノムの特定領域に集積したクラスター構造を形成していることが報告されている（Chijiwa et al., 2012; Ikeda, 2011; Ikeda et al., 2010; Nobuhisa et al., 1996）。これまでも、クサリヘビ科ヘビのIIA型毒PLA2遺伝子クラスターの特異なゲノム構造から、それらと哺乳類や鳥類でも保存されているII型及びV型PLA2が存在する分泌型PLA2遺伝子クラスターとの関係性については、ヘビ毒PLA2を扱う研究者の間でこれまで深く議論されてこなかった。加えて、多重遺伝子ファミリーを形成するIIA型毒PLA2遺伝子ではオーソログの選定が困難であったため、クサリヘビ科ヘビのIIA型毒PLA2を取り扱った研究報告のほとんどで、オーソロガスな関係性を十分に考慮せずパラログを含めた比較がこれまで行われてきた。

本研究では、クサリヘビ科ヘビのIIA型毒PLA2遺伝子の起源と分子進化の過程を解明するために、5章1節の「比較ゲノム解析から明らかになったPLA2遺
伝子のゲノム構造とその進化』の項において、クサリヘビ科マムシ亜科ヘビであるホンハブとヒメハブの毒 PLA2 遺伝子クラスターのゲノム構造を明らかにし、その構造を哺乳類、鳥類、ヘビ類の非毒性分泌型 PLA2 遺伝子クラスターと比較することで、毒 PLA2 アイソザイム遺伝子の進化とその起源、そして遺伝子クラスター形成の過程の解明を試みた。さらに、ホンハブ、ヒメハブ、サザンスペックルドラトルスネークの 3 種のクサリヘビ科マムシ亜科ヘビの IIA 型毒 PLA2 遺伝子クラスター領域のゲノム構造比較し、そこに存在する IIA 型 PLA2 アイソザイムに対する分子系統学的な分類から、クサリヘビ科マムシ亜科ヘビ IIA 型 PLA2 アイソザイム遺伝子におけるオーソロガスな関係性を同定し、属間でシンテニーが保存されているのかを検証した。

奄美大島、徳之島、沖縄本島に棲息するホンハブとトカラハブの毒成分の比較解析から、[Lys⁴⁹]PLA2 アイソザイムのサブタイプの有無が島嶼集団特異的に変化していることが強く示唆されてきた (Chijiwa et al., 2003b; Murakami et al., 2009; Yatsui, 2006)。

クサリヘビ科ヘビの IIA 型の毒 PLA2 アイソザイムは毒素で特異的に発現していることが知られ、組織特異的な転写制御には恐らくエピジェネティクスが関与していることが推測されるが、爬虫類におけるエピジェネティクスに関しては未知な部分が多く、多重遺伝子である毒 PLA2 の転写制御がどのような機構で制御されているかは非常に興味深い。

本研究では、クサリヘビ科ヘビの分泌型 PLA2 遺伝子の転写制御にエピジェネティクスが関与しているのかを調べるために、5 章 3 節の「クサリヘビ科ヘビ PLA2 遺伝子発現とそれを調節するエピジェネティクス」の項において、IIA 型 PLA2 である塩基性[Asp⁴⁹]PLA2 遺伝子と祖先型 PLA2 遺伝子、及び IB 型 PLA2 遺伝子のプロモーター領域のメチル化状態解析を行い、ヘビゲノムにおけるメチル化パターンの変化が転写制御にどう影響しているのかを検証した。
4. 材料と方法
4-1. 試料と試薬
4-1-1. 試料
実験に用いたゲノム DNA は下部リストに示す、ホンハブ（個体番号：No. 1~6, 9）トカラハブ（No. 10~15）、サキシマハブ（No. 16）、ヒメハブ（No. 17~24）の各臓器から、Blin and Stafford (1976) の手法を用いて抽出された（Blin and Stafford, 1976）。
また、Total RNA も下部リストに示す、ホンハブ（No. 7, 8）、ヒメハブ（No. 25）の各臓器から抽出された。

<table>
<thead>
<tr>
<th>種名</th>
<th>採集地</th>
<th>性別</th>
<th>発達段階</th>
<th>採取/抽出日</th>
<th>組織</th>
<th>個体番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゴシラ</td>
<td>奄美大島</td>
<td>♀</td>
<td>成蛇</td>
<td>11.01.21</td>
<td>肝臓</td>
<td>No. 1</td>
</tr>
<tr>
<td>ゴシラ</td>
<td>奄美大島</td>
<td>♂</td>
<td>成蛇</td>
<td>11.01.21</td>
<td>肝臓</td>
<td>No. 2</td>
</tr>
<tr>
<td>ゴシラ</td>
<td>奄美大島</td>
<td>♀</td>
<td>成蛇</td>
<td>11.08.29</td>
<td>毒腺, 肝臓</td>
<td>No. 3</td>
</tr>
<tr>
<td>ゴシラ</td>
<td>奄美大島</td>
<td>♀</td>
<td>成蛇</td>
<td>11.08.29</td>
<td>肝臓</td>
<td>No. 4</td>
</tr>
<tr>
<td>ゴシラ</td>
<td>奄美大島</td>
<td>不明</td>
<td>成蛇</td>
<td>10.09.16</td>
<td>肝臓</td>
<td>No. 5</td>
</tr>
<tr>
<td>ゴシラ</td>
<td>奄美大島</td>
<td>♀</td>
<td>成蛇</td>
<td>12.09.05</td>
<td>肝臓, 肺, 肝臓, 脾臓</td>
<td>No. 6</td>
</tr>
<tr>
<td>ゴシラ</td>
<td>奄美大島</td>
<td>♀</td>
<td>成蛇</td>
<td>12.09.05</td>
<td>腦, 煉肉, 肝臓, 心臓, 肺, 脾臓, 胰臓, 小腸, 卵巢</td>
<td>No. 7</td>
</tr>
<tr>
<td>ゴシラ</td>
<td>奄美大島</td>
<td>♂</td>
<td>成蛇</td>
<td>12.09.08</td>
<td>精巣</td>
<td>No. 8</td>
</tr>
<tr>
<td>ゴシラ</td>
<td>沖縄本島</td>
<td>♀</td>
<td>成蛇</td>
<td>11.12.08</td>
<td>脾臓</td>
<td>No. 9</td>
</tr>
<tr>
<td>トカラハブ</td>
<td>小宝島</td>
<td>♂</td>
<td>成蛇</td>
<td>08.08.21</td>
<td>肝臓</td>
<td>No. 10</td>
</tr>
<tr>
<td>トカラハブ</td>
<td>小宝島</td>
<td>不明</td>
<td>成蛇</td>
<td>13.09.14</td>
<td>肝臓</td>
<td>No. 11</td>
</tr>
<tr>
<td>トカラハブ</td>
<td>小宝島</td>
<td>不明</td>
<td>不明</td>
<td>05.07.23</td>
<td>肝臓</td>
<td>No. 12</td>
</tr>
<tr>
<td>トカラハブ</td>
<td>小宝島</td>
<td>不明</td>
<td>成蛇</td>
<td>11.12.08</td>
<td>肝臓</td>
<td>No. 13</td>
</tr>
<tr>
<td>トカラハブ</td>
<td>小宝島</td>
<td>不明</td>
<td>成蛇</td>
<td>13.09.14</td>
<td>毒腺</td>
<td>No. 14</td>
</tr>
<tr>
<td>トカラハブ</td>
<td>小宝島</td>
<td>不明</td>
<td>成蛇</td>
<td>13.09.14</td>
<td>毒腺</td>
<td>No. 15</td>
</tr>
<tr>
<td>サキシマハブ</td>
<td>石垣島</td>
<td>不明</td>
<td>不明</td>
<td>06.03.20</td>
<td>肝臓</td>
<td>No. 16</td>
</tr>
<tr>
<td>ヒメハブ</td>
<td>奄美大島</td>
<td>♀</td>
<td>成蛇</td>
<td>09.09.02</td>
<td>肝臓</td>
<td>No. 17</td>
</tr>
<tr>
<td>ヒメハブ</td>
<td>奄美大島</td>
<td>♀</td>
<td>成蛇</td>
<td>09.09.02</td>
<td>肝臓</td>
<td>No. 18</td>
</tr>
</tbody>
</table>
4-1-2. 試薬

使用した試薬及び、一般試薬の組成、調整法を以下に示す。一般的でない特定実験にのみ用いる試薬は各実験項目の最初に記述しておく。なお、以降全ての実験に用いる水は特別な場合を除き、全て超純水グレードの水（Milli-Q）をオートクレープ滅菌したものを利用している。また、本実験で使用した合成オリゴDNAの詳細に関しては、第7章に別途記載している。

<table>
<thead>
<tr>
<th>試薬名</th>
<th>メーカー</th>
<th>カタログ番号</th>
<th>保存場所</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% (w/v) アクリルアミド溶液</td>
<td>和光純薬工業</td>
<td>018-25625</td>
<td>B</td>
</tr>
<tr>
<td>50% Ammonium hydrogen sulfite solution (pH 4.5)</td>
<td>和光純薬工業</td>
<td>013-23931</td>
<td>A</td>
</tr>
<tr>
<td>6-Aminohexanoic acid</td>
<td>東京化成工業</td>
<td>A0312</td>
<td>A</td>
</tr>
<tr>
<td>Adenosine-5’-triphosphate</td>
<td>Roche</td>
<td>10127523001</td>
<td>B</td>
</tr>
<tr>
<td>Agarose for ≥ 1kbp fragment (Fine Powder)</td>
<td>ナカライテスク</td>
<td>02468-66</td>
<td>A</td>
</tr>
<tr>
<td>Ager, powder</td>
<td>ナカライテスク</td>
<td>01028-85</td>
<td>A</td>
</tr>
<tr>
<td>AG® 501-X8 Resin</td>
<td>Bio-Rad Laboratories</td>
<td>1426424</td>
<td>A</td>
</tr>
<tr>
<td>Alkaline Phosphatase, recombinant (Calf intestine) (CIP)</td>
<td>Nippon gene</td>
<td>312-08011</td>
<td>E</td>
</tr>
<tr>
<td>Ammonium acetate</td>
<td>ナカライテスク</td>
<td>02406-95</td>
<td>C</td>
</tr>
<tr>
<td>Ammonium peroxodisulfate (APS)</td>
<td>和光純薬工業</td>
<td>016-20501</td>
<td>A</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>ナカライテスク</td>
<td>02619-15</td>
<td>A</td>
</tr>
<tr>
<td>Ammonium sulfate, 1-hydrate</td>
<td>Sigma-Aldrich</td>
<td>358983-500G</td>
<td>B</td>
</tr>
<tr>
<td>Ampicillin sodium salt</td>
<td>ナカライテスク</td>
<td>02739-74</td>
<td>B</td>
</tr>
<tr>
<td>AmpliTaq Gold® 360 Master Mix</td>
<td>Applied Biosystems</td>
<td>4398881</td>
<td>E</td>
</tr>
<tr>
<td>Product Name</td>
<td>Supplier</td>
<td>Catalog Number</td>
<td>Unit</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Anti-Digoxigenin-AP, Fab fragments</td>
<td>Roche</td>
<td>11093274910</td>
<td>B</td>
</tr>
<tr>
<td>Bacto tryptone</td>
<td>BD Biosciences</td>
<td>211705</td>
<td>A</td>
</tr>
<tr>
<td>Bacto yeast extract</td>
<td>BD Biosciences</td>
<td>212750</td>
<td>A</td>
</tr>
<tr>
<td>Big Dye® Terminator 5× Sequencing Buffer</td>
<td>Applied Biosystems</td>
<td>4336697</td>
<td>B</td>
</tr>
<tr>
<td>Big Dye Terminator v3.1 Cycle Sequencing Kit</td>
<td>Applied Biosystems</td>
<td>4337455</td>
<td>E</td>
</tr>
<tr>
<td>Boric acid</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Bromophenol blue</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Calcium chloride, 2-hydrate</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>D-Glucose</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Deoxycholic acid</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DIG DNA Labeling Mix, 10×</td>
<td>Roche</td>
<td>11277073910</td>
<td>E</td>
</tr>
<tr>
<td>Dimethyl pimelimidate dihydrochloride</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Disodium hydrogen phosphate, 12-hydrate</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Dithiothreitol</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>E. coli BL21 (DE3) Competent Cells</td>
<td>Novagen</td>
<td>69450</td>
<td>F</td>
</tr>
<tr>
<td>E. coli JM109 Competent Cells</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>E. coli Rosetta-gami™ B (DE3) pLysS</td>
<td>Novagen</td>
<td>71137</td>
<td>F</td>
</tr>
<tr>
<td>E. coli DH5α Competent Cells</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>ECL Western Blotting Detection Reagents</td>
<td>GE Healthcare</td>
<td>RPN2109</td>
<td>A</td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Ethylenediaminetetraacetic acid disodium salt, 2-hydrate (EDTA 2Na · 2H2O)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficoll 400</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Formamide</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Glycerol</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Glycine</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Hexanucleotide Mix, 10×</td>
<td>Roche</td>
<td>11277081001</td>
<td>E</td>
</tr>
<tr>
<td>Hi-Di™ Formamide</td>
<td>Applied Biosystems</td>
<td>4311320</td>
<td>D, E</td>
</tr>
<tr>
<td>Name</td>
<td>Manufacturer</td>
<td>Code</td>
<td>Code Type</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>High Pure Plasmid Isolation Kit</td>
<td>Roche</td>
<td>11754777001</td>
<td>A</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>ナカライテスク</td>
<td>18321-05</td>
<td>A</td>
</tr>
<tr>
<td>Imidazole</td>
<td>ナカライテスク</td>
<td>09660-45</td>
<td>A</td>
</tr>
<tr>
<td>ISOGEN</td>
<td>Nippon gene</td>
<td>317-02503</td>
<td>B</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>和光純薬工業</td>
<td>325-00045</td>
<td>A</td>
</tr>
<tr>
<td>Isopropyl β-D-1-thiogalactopyranoside</td>
<td>ナカライテスク</td>
<td>19742-94</td>
<td>B</td>
</tr>
<tr>
<td>Kanamycin sulfate</td>
<td>和光純薬工業</td>
<td>133-92-6</td>
<td>B</td>
</tr>
<tr>
<td>Klenow Fragment (2 U/µL)</td>
<td>Nippon gene</td>
<td>312-00814</td>
<td>E</td>
</tr>
<tr>
<td>KOD -Plus-</td>
<td>TOYOBO</td>
<td>KOD-201</td>
<td>E</td>
</tr>
<tr>
<td>KOD -Plus- Neo</td>
<td>TOYOBO</td>
<td>KOD-401</td>
<td>E</td>
</tr>
<tr>
<td>KOD FX</td>
<td>TOYOBO</td>
<td>KFX-101</td>
<td>E</td>
</tr>
<tr>
<td>L-Arginine hydrochloride</td>
<td>Sigma-Aldrich</td>
<td>A92600</td>
<td>C</td>
</tr>
<tr>
<td>L-Cysteine</td>
<td>Sigma-Aldrich</td>
<td>168149-2.5G</td>
<td>C</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>Sigma-Aldrich</td>
<td>C6727-25G</td>
<td>C</td>
</tr>
<tr>
<td>Ligation High</td>
<td>TOYOBO</td>
<td>LGK-101</td>
<td>E</td>
</tr>
<tr>
<td>Magnesium chloride, 6-hydrate</td>
<td>ナカライテスク</td>
<td>20909-55</td>
<td>C</td>
</tr>
<tr>
<td>Magnesium sulfate, 7-hydrate</td>
<td>ナカライテスク</td>
<td>21003-75</td>
<td>A</td>
</tr>
<tr>
<td>Methanol</td>
<td>ナカライテスク</td>
<td>21915-93</td>
<td>A</td>
</tr>
<tr>
<td>N-Lauroylsarcosine Sodium Salt</td>
<td>ナカライテスク</td>
<td>20117-12</td>
<td>A</td>
</tr>
<tr>
<td>N, N-dimethylformamide</td>
<td>ナカライテスク</td>
<td>13016-65</td>
<td>A</td>
</tr>
<tr>
<td>pET-20b Vector</td>
<td>Novagen</td>
<td>69739</td>
<td>E</td>
</tr>
<tr>
<td>Phenol, Saturated with TE Buffer</td>
<td>ナカライテスク</td>
<td>26829-96</td>
<td>B, C</td>
</tr>
<tr>
<td>Polyethylene glycol #6,000</td>
<td>ナカライテスク</td>
<td>28254-85</td>
<td>A</td>
</tr>
<tr>
<td>Polyoxyethylene (23) lauryl ether (Brij®-35)</td>
<td>和光純薬工業</td>
<td>160-11561</td>
<td>A</td>
</tr>
<tr>
<td>Potassium acetate</td>
<td>ナカライテスク</td>
<td>28434-25</td>
<td>A</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>和光純薬工業</td>
<td>160-14001</td>
<td>B</td>
</tr>
<tr>
<td>pT7Blue T-Vector</td>
<td>Novagen</td>
<td>69820</td>
<td>E</td>
</tr>
<tr>
<td>Product Description</td>
<td>Manufacturer</td>
<td>Catalog Number</td>
<td>Temp</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>pWEB-TNC™ Cosmid Cloning Kit</td>
<td>Epicentre</td>
<td>PC8805</td>
<td>E</td>
</tr>
<tr>
<td>QIAGEN Large-Construct Kit</td>
<td>QIAGEN</td>
<td>12462</td>
<td>A</td>
</tr>
<tr>
<td>ReverTra Ace® qPCR RT Master Mix with gDNA Remover</td>
<td>TOYOBO</td>
<td>FSQ-301</td>
<td>E</td>
</tr>
<tr>
<td>RNase A (10 mg/mL)</td>
<td>ナカライテスク</td>
<td>30100-31</td>
<td>D</td>
</tr>
<tr>
<td>RNase Quiet</td>
<td>ナカライテスク</td>
<td>09147-14</td>
<td>A</td>
</tr>
<tr>
<td>SeaPlaque® GTG® Agarose</td>
<td>Lonza</td>
<td>50111</td>
<td>A</td>
</tr>
<tr>
<td>Skim Milk</td>
<td>ナカライテスク</td>
<td>31149-75</td>
<td>A</td>
</tr>
<tr>
<td>SMART™ cDNA Library Construction Kit</td>
<td>Clontech Laboratories</td>
<td>634901</td>
<td>E</td>
</tr>
<tr>
<td>Sodium acetate, 3-hydrate</td>
<td>ナカライテスク</td>
<td>31115-05</td>
<td>A</td>
</tr>
<tr>
<td>Sodium bisulfite</td>
<td>Sigma-Aldrich</td>
<td>243973-100G</td>
<td>A</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>ナカライテスク</td>
<td>31333-45</td>
<td>A</td>
</tr>
<tr>
<td>Sodium dihydrogen phosphate, 2-hydrate</td>
<td>ナカライテスク</td>
<td>31737-65</td>
<td>A</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate</td>
<td>ナカライテスク</td>
<td>08933-05</td>
<td>A</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>ナカライテスク</td>
<td>06338-75</td>
<td>A</td>
</tr>
<tr>
<td>Sucrose</td>
<td>ナカライテスク</td>
<td>30406-25</td>
<td>A</td>
</tr>
<tr>
<td>TaKaRa LA PCR™ in vitro Cloning Kit</td>
<td>Takara Bio</td>
<td>RR015</td>
<td>E</td>
</tr>
<tr>
<td>Tetracycline hydrochloride</td>
<td>ナカライテスク</td>
<td>33031-64</td>
<td>B</td>
</tr>
<tr>
<td>Tetramethylethylenediamine (TEMED)</td>
<td>ナカライテスク</td>
<td>33401-72</td>
<td>B</td>
</tr>
<tr>
<td>THUNDERBIRD® Probe qPCR Mix</td>
<td>TOYOBO</td>
<td>QPS-101</td>
<td>E</td>
</tr>
<tr>
<td>TOPO® TA Cloning® Kit for Sequencing</td>
<td>Invitrogen</td>
<td>450071</td>
<td>E</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>東京化成工業</td>
<td>S0377</td>
<td>A</td>
</tr>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>ナカライテスク</td>
<td>35434-05</td>
<td>A</td>
</tr>
<tr>
<td>Trisodium citrate, 2-hydrate</td>
<td>ナカライテスク</td>
<td>31430-65</td>
<td>A</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Roche</td>
<td>10789704001</td>
<td>B</td>
</tr>
<tr>
<td>Tween® 20</td>
<td>Sigma-Aldrich</td>
<td>P9416-100ML</td>
<td>A</td>
</tr>
<tr>
<td>Urea</td>
<td>ナカライテスク</td>
<td>35905-35</td>
<td>A</td>
</tr>
<tr>
<td>Wizard® DNA Clean-Up system</td>
<td>Promega</td>
<td>A7280</td>
<td>A</td>
</tr>
<tr>
<td>Xylene cyanol FF</td>
<td>ナカライテスク</td>
<td>36629-64</td>
<td>A</td>
</tr>
<tr>
<td>Zero Blunt® TOPO® PCR Cloning Kit</td>
<td>Invitrogen</td>
<td>450245</td>
<td>E</td>
</tr>
<tr>
<td>X-gal</td>
<td>和光純薬工業</td>
<td>027-07854</td>
<td>B</td>
</tr>
</tbody>
</table>

*保存場所: A, 常温 (試薬棚及び薬品庫); B, 4°C (冷蔵庫); C, 4°C (低温室); D, −20°C (冷凍庫); E,
-30°C (冷凍庫); F, -80°C (ディープフリーザー)。

лез 2 N, 6 N HCl

<table>
<thead>
<tr>
<th>Milli-Q</th>
<th>41.6 mL, 25 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochloric acid (35-37%)</td>
<td>8.4 mL, 25 mL</td>
</tr>
</tbody>
</table>

(2 N) (6 N)

лез 2 N, 5 N, 6 N NaOH

<table>
<thead>
<tr>
<th>Sodium hydroxide</th>
<th>4 g, 10 g, 12g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q で 50 mL にメスアップ</td>
<td>Total 50 mL</td>
</tr>
</tbody>
</table>

лез 1 M Tris-HCl (pH 8.0*)

<table>
<thead>
<tr>
<th>Tris (hydroxymethyl) aminomethane</th>
<th>30.3 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 N HCl (pH 調整用)</td>
<td>適量</td>
</tr>
<tr>
<td>2 N HCl (pH 調整用)</td>
<td>適量</td>
</tr>
</tbody>
</table>

↓ pH メーターで pH 8.0*に調整 (*pH は使用目的により適宜変更する。)
↓ Milli-Q で 250 mL にメスアップ | Total 250 mL | Autoclaved |

лез 0.5 M EDTA (pH 8.0)

<table>
<thead>
<tr>
<th>EDTA 2Na・2H2O</th>
<th>46.5 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH (顆粒) (pH 調整用)</td>
<td>適量</td>
</tr>
<tr>
<td>5 N NaOH (pH 調整用)</td>
<td>適量</td>
</tr>
</tbody>
</table>

↓ pH メーターで pH 8.0 に調整
↓ Milli-Q で 250 mL にメスアップ | Total 250 mL | Autoclaved |

лез TE パッファー (pH 8.0)

<table>
<thead>
<tr>
<th>1 M Tris-HCl (pH 8.0)</th>
<th>500 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 M EDTA (pH 8.0)</td>
<td>100 µL</td>
</tr>
</tbody>
</table>

Milli-Q で 50 mL にメスアップ | Total 50 mL |

лез 10×TAE パッファー

<table>
<thead>
<tr>
<th>Tris (hydroxymethyl) aminomethane</th>
<th>48.0 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 M EDTA (pH 8.0)</td>
<td>20 mL</td>
</tr>
</tbody>
</table>

(40 mM) (0.4 M)
Glacial acetic acid 11.4 mL (0.4 M)

Milli-Q・脱イオン水で 1 L にメスアップ Total 1 L
使用時は 10 倍希釈し，1×濃度で使用する。

* 0.5×TBE パッファー

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>53.9 g</td>
<td>(44.5 mM)</td>
</tr>
<tr>
<td>Boric acid</td>
<td>27.5 g</td>
<td>(44.5 mM)</td>
</tr>
<tr>
<td>0.5 M EDTA (pH 8.0)</td>
<td>20 mL</td>
<td>(1 mM)</td>
</tr>
</tbody>
</table>

脱イオン水で 10 L にメスアップ Total 10 L

* 3 M 酢酸ナトリウム (pH 5.2)

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium acetate, 3-hydrate</td>
<td>40.8 g</td>
<td>(3 M)</td>
</tr>
<tr>
<td>Glacial acetic acid (pH 調整用)</td>
<td>適量</td>
<td></td>
</tr>
<tr>
<td>↓pH メーターで pH 5.2 に調整</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓Milli-Q で 100 mL にメスアップ</td>
<td>Total 100 L</td>
<td></td>
</tr>
</tbody>
</table>

* 5 M 酢酸アンモニウム

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium acetate</td>
<td>3.85 g</td>
<td>(5 M)</td>
</tr>
<tr>
<td>↓Milli-Q で 10 mL にメスアップ</td>
<td>Total 10 mL</td>
<td>Filtered (0.22 μm)</td>
</tr>
<tr>
<td>↓小分けに分注し，-30℃ で保存。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 5 M 酢酸カリウム

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium acetate</td>
<td>49.1 g</td>
<td>(5 M)</td>
</tr>
<tr>
<td>Milli-Q で 100 mL にメスアップ</td>
<td>Total 100 mL</td>
<td>Autoclaved</td>
</tr>
</tbody>
</table>

* 10% (w/v) SDS 溶液

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium dodecyl sulfate</td>
<td>10 g</td>
<td>(10%)</td>
</tr>
<tr>
<td>Milli-Q で 100 mL にメスアップ</td>
<td>Total 100 mL</td>
<td></td>
</tr>
</tbody>
</table>

* 6×, 10× Gel loading dye (アガロースゲル電気泳動用)

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficoll 400</td>
<td>1.5 g, 2.5 g</td>
<td>(15, 25 %)</td>
</tr>
<tr>
<td>0.5 M EDTA (pH 8.0)</td>
<td>20 μL</td>
<td>(1 mM)</td>
</tr>
<tr>
<td>材料</td>
<td>量</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Bromophenol blue</td>
<td>適量</td>
<td></td>
</tr>
<tr>
<td>Xylene cyanol FF</td>
<td>適量</td>
<td></td>
</tr>
<tr>
<td>Milli-Q で 10 mL にメスアップ</td>
<td>Total 10 mL</td>
<td></td>
</tr>
</tbody>
</table>

※ Solution I

<table>
<thead>
<tr>
<th>材料</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>グルコース</td>
<td>0.9 g (50 mM)</td>
</tr>
<tr>
<td>1 M Tris-HCl (pH 8.0)</td>
<td>2.5 mL (25 mM)</td>
</tr>
<tr>
<td>0.5 M EDTA (pH 8.0)</td>
<td>2.0 mL (10 mM)</td>
</tr>
<tr>
<td>Milli-Q で 100 mL にメスアップ</td>
<td>Total 100 mL Autoclaved</td>
</tr>
</tbody>
</table>

※ Solution II

(用時調製)

<table>
<thead>
<tr>
<th>材料</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>4 mL</td>
</tr>
<tr>
<td>10% SDS</td>
<td>500 µL (1%)</td>
</tr>
<tr>
<td>2 N NaOH</td>
<td>500 µL (0.2 N)</td>
</tr>
<tr>
<td>Total 5 mL</td>
<td></td>
</tr>
</tbody>
</table>

※ Solution III

<table>
<thead>
<tr>
<th>材料</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 M 酢酸カリウム溶液</td>
<td>60 mL (5 M, 3 M)</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>11.5 mL</td>
</tr>
<tr>
<td>Milli-Q で 100 mL にメスアップ</td>
<td>to 100 mL Autoclaved</td>
</tr>
</tbody>
</table>

※ 20% PEG/2.5 M NaCl 溶液

<table>
<thead>
<tr>
<th>材料</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene glycol #6,000</td>
<td>20 g (5 M, 3 M)</td>
</tr>
<tr>
<td>NaCl</td>
<td>14.6 g</td>
</tr>
<tr>
<td>Milli-Q で 100 mL にメスアップ</td>
<td>to 100 mL Autoclaved</td>
</tr>
</tbody>
</table>

※ 20×SSC 溶液

<table>
<thead>
<tr>
<th>材料</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>175.3 g (3 M)</td>
</tr>
<tr>
<td>Trisodium citrate, 2-hydrate</td>
<td>88.2 g (0.3 M)</td>
</tr>
<tr>
<td>6 N HCl (pH 調整用)</td>
<td>適量</td>
</tr>
<tr>
<td>2 N HCl (pH 調整用)</td>
<td>適量</td>
</tr>
<tr>
<td>↓pH メーターで pH 7.0 に調整</td>
<td></td>
</tr>
</tbody>
</table>

↓pH メーターで pH 7.0 に調整
<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>溶液濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q で 1 L にメスアップ</td>
<td>Total 1 L</td>
<td>Autoclaved</td>
</tr>
<tr>
<td>Sodium dihydrogen phosphate, 2-hydrate</td>
<td>15.6 g</td>
<td>(1 M)</td>
</tr>
<tr>
<td>Milli-Q で 100 mL にメスアップ</td>
<td>Total 100 mL</td>
<td></td>
</tr>
<tr>
<td>Disodium hydrogen phosphate, 12-hydrate</td>
<td>35.8 g</td>
<td>(1 M)</td>
</tr>
<tr>
<td>Milli-Q で 100 mL にメスアップ</td>
<td>Total 100 mL</td>
<td></td>
</tr>
<tr>
<td>リン酸ナトリウム緩衝液 (pH 7.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 M リン酸二水素ナトリウム</td>
<td>約 25 mL</td>
<td>(1 M)</td>
</tr>
<tr>
<td>1 M リン酸水素二ナトリウム</td>
<td>約 X mL</td>
<td>(1 M)</td>
</tr>
<tr>
<td>↓ 25 mL の 1 M リン酸二水素ナトリウムに 1 M リン酸水素二ナトリウムを滴下し、pH を 7.0 に調整する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ Autoclaved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium chloride, 2-hydrate</td>
<td>7.35 g</td>
<td>(1 M)</td>
</tr>
<tr>
<td>Milli-Q で 50 mL にメスアップ</td>
<td>Total 50 mL</td>
<td>Autoclaved</td>
</tr>
<tr>
<td>Magnesium chloride, 6-hydrate</td>
<td>10.2 g</td>
<td>(1 M)</td>
</tr>
<tr>
<td>Milli-Q で 50 mL にメスアップ</td>
<td>Total 50 mL</td>
<td>Autoclaved</td>
</tr>
<tr>
<td>Magnesium sulfate, 7-hydrate</td>
<td>12.3 g</td>
<td>(1 M)</td>
</tr>
<tr>
<td>Milli-Q で 50 mL にメスアップ</td>
<td>Total 50 mL</td>
<td>Autoclaved</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>7.3 g</td>
<td>(5 M)</td>
</tr>
<tr>
<td>Milli-Q で 25 mL にメスアップ</td>
<td>Total 25 mL</td>
<td>Autoclaved</td>
</tr>
</tbody>
</table>
1 M グルコース

<table>
<thead>
<tr>
<th></th>
<th>Glucose</th>
<th>9 g</th>
<th>(1 M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q で 50 mL にメスアップ</td>
<td>Total 50 mL</td>
<td>Filtered (0.22 µm)</td>
<td></td>
</tr>
</tbody>
</table>

50% (v/v) グリセロール溶液

<table>
<thead>
<tr>
<th></th>
<th>Glucose</th>
<th>50 mL</th>
<th>(50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q で 50 mL にメスアップ</td>
<td>Total 100 mL</td>
<td>Autoclaved</td>
<td></td>
</tr>
</tbody>
</table>

1 M IPTG

<table>
<thead>
<tr>
<th>Isopropyl β-D-1-thiogalactopyranoside</th>
<th>2.38 g</th>
<th>(1 M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q で 10 mL にメスアップ</td>
<td>Total 10 mL</td>
<td>Filtered (0.22 µm)</td>
</tr>
</tbody>
</table>

↓ 小分けに分注し、−20°C で保存。
↓ 使用時は 0.1 ~0.5 mM の範囲で使用する。

20 mg/mL X-gal

<table>
<thead>
<tr>
<th>X-gal</th>
<th>100 mg</th>
<th>(20 mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, N-dimethylformamide で 5 mL にメスアップ</td>
<td>Total 5 mL</td>
<td></td>
</tr>
</tbody>
</table>

↓ 小分けに分注し、−20°C で避光保存。
↓ 使用時は培地 100 mL あたり 200 µL を添加して使用する。

100 mg/mL アンピシリン

<table>
<thead>
<tr>
<th>Ampicillin sodium salt</th>
<th>500 mg</th>
<th>(100 mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q で 5 mL にメスアップ</td>
<td>Total 5 mL</td>
<td>Filtered (0.22 µm)</td>
</tr>
</tbody>
</table>

↓ 小分けに分注し、−20°C で保存。
↓ 使用濃度 100 µg/mL (20~200 µg/mL) で使用する。

20 mg/mL カナマイシン

<table>
<thead>
<tr>
<th>Kanamycin sulfate</th>
<th>100 mg</th>
<th>(20 mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q で 5 mL にメスアップ</td>
<td>Total 5 mL</td>
<td>Filtered (0.22 µm)</td>
</tr>
</tbody>
</table>

↓ 小分けに分注し、−20°C で保存。
↓ 使用濃度 20 µg/mL (10~50 µg/mL) で使用する。
30 mg/mL クロラムフェニコール

<table>
<thead>
<tr>
<th>Chloramphenicol</th>
<th>150 mg</th>
<th>(30 mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>エタノールで 5 mL にメスアップ</td>
<td>Total 5 mL</td>
<td></td>
</tr>
<tr>
<td>↓ 小分けに分注し, -20°C で保存。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ 使用濃度 30 µg/mL (30~170 µg/mL) で使用する。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20 mg/mL テトラサイクリン

<table>
<thead>
<tr>
<th>Tetracycline hydrochloride</th>
<th>100 mg</th>
<th>(20 mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q で 5 mL にメスアップ</td>
<td>Total 5 mL</td>
<td></td>
</tr>
<tr>
<td>↓ 小分けに分注し, -20°C で遮光保存。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ 使用濃度 20 µg/mL (10~50 µg/mL) で使用する。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOC 培地

Bacto tryptone	4 g	(2%)
Bacto yeast extract	1g	(0.5%)
NaCl	0.1 g	(0.05%)
5 N NaOH	40 µL	
純水で 200 mL にメスアップ	Total 200 mL	
↓ 60°C 以下に冷めたら, 漬過滅菌済み 1 M グルコースを 4 mL 無菌的に加える。		
↓ 60°C 以下に冷めたら, 漬菌済み 1 M MgCl₂ と 1 M MgSO₄ をそれぞれ 2 mL ずつ無菌的に加える。		
↓ 小分けに分注し, -80°C で保存。		

LB 液体培地

NaCl	1 g	(1%)
Bacto tryptone	1 g	(1%)
Bacto yeast extract	0.5g	(0.5%)
純水で 100 mL にメスアップ	Total 100 mL	
↓ 4°C で保存。		
↓ 必要時に適当な抗生物質を必要量添加して用いる。		

10 mM MgSO₄ 添加 LB 液体培地

| NaCl | 0.5 g | (1%) |
Bacto tryptone 0.5 g (1%)
Bacto yeast extract 0.25 g (0.5%)

蒸留水で 50 mL にメスアップ Total 50 mL Autoclaved
↓60℃以下に冷めたら 1 M MgSO₄を 500 μL 無菌的に加える。4℃で保存。

● LB 寒天培地

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
<th>(% or mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>2 g</td>
<td>(1%)</td>
</tr>
<tr>
<td>Bacto tryptone</td>
<td>2 g</td>
<td>(1%)</td>
</tr>
<tr>
<td>Bacto yeast extract</td>
<td>1 g</td>
<td>(0.5%)</td>
</tr>
<tr>
<td>Ager, powder</td>
<td>3 g</td>
<td>(1.5%)</td>
</tr>
</tbody>
</table>

蒸留水で 200 mL にメスアップ Total 200 mL Autoclaved
↓60℃以下に冷めたら、適当な抗生物質及びカラーセレクション試薬等を必要量無菌的に加える。4℃で保存。

4-2. ゲノム構造解析
4-2-1. ハブ組織からのゲノム DNA 抽出

本項では組織からのゲノム DNA の抽出操作について記述する。以降の実験に用いるゲノム DNA は第4章1節1項で示したように、ホンハブ(個体番号: No. 1~6, 9), トカラハブ (No. 10~15), サキシマハブ (No. 16), ヒメハブ (No. 17~24)の各臓器から、Blin and Stafford (1976) の手法に従って、それぞれ抽出を行った (Blin and Stafford, 1976)。なお、使用した全ての器具類は可能な限り、充分に洗浄し、滅菌処理を施した。

● 細胞溶解バッファー

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Volume</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M Tris-HCl (pH 8.0)</td>
<td>200 μL</td>
<td>(50 mM)</td>
</tr>
<tr>
<td>0.5 M EDTA</td>
<td>800 μL</td>
<td>(100 mM)</td>
</tr>
<tr>
<td>10% SDS</td>
<td>200 μL</td>
<td>(0.5%)</td>
</tr>
<tr>
<td>RNase A (10 mg/mL)</td>
<td>5 μL</td>
<td>(50 μg)</td>
</tr>
</tbody>
</table>

Milli-Qで3 mLにメスアップ Total 3 mL

1. 清潔なポリプロピレン製スピッツ容器に、細胞溶解バッファーを調製する。
2. 事前に冷却しておいた清潔な乳鋲・乳棒に液体窒素を注ぎ、乳鋲・乳棒及び薬さじ等の器具を良く冷却する。
3. 液体窒素が充填された乳鋲に適度な大きさに砕かれた組織片（1立方センチメートル程度）を投入し、液体窒素が完全に蒸発する前に、組織片を乳棒で叩き砕き、いくつかの小断片にしておく。
4. 液体窒素が蒸発後、素早く組織片を粉砕する。液体窒素の蒸発は超音波キャビテーションによるゲノム DNA の物理的断片化を引き起こすので、液体窒素の補充は避ける。
5. 手順 1 で調製した細胞溶解バッファーに粉砕された組織を素早く投入する。
6. 2 mg の Proteinase K をスピッツに素早く添加し、粉碎組織を速やかに懸濁し、均一化させる。
7. 60°C に温めておいた恒温水槽にスピッツを 10 分間浸し、粉碎組織を細胞溶解バッファーに馴染ませる。
8. 55°C に温めておいたエアインキュベーターにスピッツを移し、8 時間以上稳やかに震盪し、細胞溶解及びタンパク質の消化処理を行う。
9. 細胞溶解及びタンパク質の消化処理が完了した細胞溶解液は 6,000 rpm, 20°C で 5 分間遠心し、先端を切り落とした 1 mL サイズのビペットチップ（滅菌済み）を用いて上清を別スピッツへ移す。以降操作はゲノム DNA の物理的剪断を防ぐため、先端を切り落とした 1 mL サイズのビペットチップを使用する。
10. 分離した上清に等量の TE 飽和フェノールを添加し、5~15 分間遠心し、適宜 TE バッファーを添加し、回収率を上げる。
11. 5,000 rpm, 20°C で 5 分間遠心し、上清を別スピッツへ移す。この際、中間層の混入を避けるために、上清の回収は 8~9 割程度にしておく。なお、上清の回収率が減る場合には適宜 TE バッファーを添加し、回収率を上げる。
12. 手順 10, 11 の作業を再度行う。
13. 回収された上清に、等量のフェノール:クロロホルム:イソアミルアルコール (PCI), pH 7.9 を添加し、5~15 分間遠心し、適宜 TE バッファーを添加し、回収率を上げる。
14. 6,000 rpm, 20°C で 5 分間遠心し、上清を別スピッツへ移す。この際、中間層の混入を避けるために、上清の回収は 8~9 割程度にしておく。なお、上清の回収率が減る場合には適宜 TE バッファーを添加し、回収率を上げる。
15. 手順 13, 14 の作業を 4 回繰り返し行う。
16. 回収された上清の量に対して、0.2 倍量の5 M 塩化ナトリウムを添加し、緩やかに転倒混和する。
17. 手順16の溶液に、等量のイソプロパノールを静かに添加し、緩やかに転倒混和する。
18. 析出したゲノム DNA を清潔なピペットチップで取り出し、70% エタノールで軽くリンスする。
19. 清潔なマイクロチューブにゲノム DNA を移し、5−15 分間程度風乾を行う。
20. 適度に風乾させたゲノム DNA に TE バッファーを 50−1000 µL 添え、ゲノム DNA を渋やかに溶解させる。
21. ゲノム DNA 溶液を 65°C で 5−15 分間インキュベートし、ゲノム DNA 溶解促進と内在性デオキシリボヌクレアーゼ (deoxyribonuclease, DNase) の失活操作を行った。
22. 分光光度計で 260, 280, 320 nm の吸光度を測定し、核酸濃度、純度を算出し、適当な濃度に達するまで TE バッファーで希釈し、4°C にて保存した。

4-2-2. コスミドを用いたゲノムライブラリーの構築

本項ではパルスフィールドゲル電気泳動 (Pulsed-field gel electrophoresis, PFGE) を用いたゲノム DNA のサイズセレクション、ゲノム DNA のコスミドへのライゲーション、ファージの in vitro パッケージング及び感染、コロニーライブラリー構築までの操作を記述する。以降の実験では pWEB-TNC™ Cosmid Cloning Kit (Epicentre, an Illumina company, Madison, WI, USA) を用いて、ホンハブ (奄美大島), トカラハブ (小寳島), ヒメハブ (奄美大島) のゲノムライブラリーをそれぞれ構築した。全ての操作は Epicentre が発刊する pWEB-TNC™ Cosmid Cloning Kit プロトコルに従って行った (Epicentre, 2012)。

* ファージ希釈バッファー

<table>
<thead>
<tr>
<th>溶液</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M Tris-HCl (pH 8.3)</td>
<td>20 µL</td>
<td>(10 mM)</td>
</tr>
<tr>
<td>5 M NaCl</td>
<td>40 µL</td>
<td>(100 mM)</td>
</tr>
<tr>
<td>1 M MgCl₂</td>
<td>20 µL</td>
<td>(10 mM)</td>
</tr>
</tbody>
</table>

Milli-Q で 2 mL にメスアップ Total 2 mL

1. 10×TAE バッファーを 1 L 程度用意し、1×TAE バッファーを調製する。
2. PFGE ゲル作成用のキャスティングスタンドの上にプラットフォームを置き、横のネジの上にエンドプレートを乗せネジを締め、ゲルキャスティングセット一式を低温室へ持っていく。

3. 低融点ゲル SeaPlaque® GTG® Agarose (Lonza 社, Rockland, ME, USA) を 1.8 g 計り取り、1×TAE パッファーを約 180 mL 用意し、1% (w/v) 低融点アガロースゲルを作成する。

4. 完全に融解した低融点アガロースゲルを 60~70℃ 程度まで冷まし、手順 2 で組み立てたゲルキャスティングセットに流し込む。

5. コームをキャスティングスタンドにセットし、低融点アガロースゲルが完全に固化するまで数時間放置する。この際、ゲル内に発生した気泡は適宜取り除く。

6. CHEF Mapper® XA (Bio-Rad Laboratories, Inc., Hercules, CA, USA) システムを起動させ、泳動槽内に蒸留水を 3 L 程度充填する。

7. ポンプ及びクーリングモジュールを起動させ、還流洗浄を行う。

8. 還流洗浄が完了したら、蒸留水を完全に廃水し、予めある程度冷まっており 3 L の 1×TAE パッファーを泳動槽内に充填・還流させ、1×TAE パッファーを充分に冷却させる。

9. ゲルキャスティングセットから、完全に固化した低融点アガロースゲルをプラットフォームごと取り出す。ゲルが壊れやすいので取扱いには注意する。

10. 低融点アガロースゲルをプラットフォームごと泳動槽内に沈める。

11. 10×Gel loading dye を用いて、サイズマーカー及び各種ゲノム DNA を調製し、ウェルにアプライする。

12. 「AUTO ALGORITHM」，分離範囲 5~100 kbp, 14°C で泳動を開始する。なお，泳動槽内の白金線が切れていないか，正常に作動しているかもこの時確認する。

13. 泳動終了後，低融点アガロースゲルを慎重に取り出し，臭化エチジウム (EtBr) で 30 分以上染色し，蒸留水で脱色処理を行い，UV トランスイルミネーターを用いて泳動像を撮影する。

14. PFGE 泳動槽は手順 6 及び 7 で示した手順で槽内の洗浄を行い，システムを終了する。

15. 撮影した泳動写真は画像処理ソフトウェア Image J (National Institutes of
Health, Bethesda, MD, USA)を用いて、ゲノム DNAの平均塩基長を算出し、ゲノムライブラリー作製に用いるサンプルの選定及びのゲノム DNA 剪断のためのシェアリング回数の決定を行う。

16. 選定されたゲノム DNAを用いて、以下の組成で試薬を氷上で混合し、末端修復反応を行う。
 ・Milli-Q to 80 μL
 ・10×End Repair Buffer 8 μL (1×)
 ・2.5 mM dNTP Mix 8 μL (0.25 mM)
 ・10 mM ATP 8 μL (1 mM)
 ・End Repair Enzyme Mix 4 μL
 ・ゲノム DNA 20 μg

17. 室温で45分間インキュベートする。

18. 10×Gel loading dyeを添加し、70℃で10分間インキュベートし、末端修復酵素の失活処理を行う。

19. 再び、順1~12に従い、PFGEによるゲノム DNAのサイズセレクションを行う。ただし、ゲノムライブラリーの構築に用いるゲノム DNAはEtBrによる染色を避けたいため、順18で準備した末端修復ゲノム DNAをアプリライするウェルと別の染色確認用のレーンを設け、そのウェルにはサイズマーカー及びゲノム DNAをアプリライしておく。

20. 泳動終了後、末端修復ゲノム DNAレーンと染色確認用のレーンを切り分け、染色確認用レーンのみを順13同様に染色、脱色、撮影を行う。末端修復ゲノム DNAレーンは4℃にて保存しておく。

21. 14, 15を行い、末端修復ゲノム DNAレーンの切り出し範囲を決定し、非 UV 照射による目視下で、ゲル体積が500 μL程度に成るように適宜ゲルを切り出す。切り出したゲル片は清潔なマイクロチューブへ移し、使用時まで4℃で保存する。なお、今回は30~45 kbpのサイズ領域を切り出した。

22. 今回は切り出したゲル片からゲノム DNAの回収及びその濃縮を行う。切り出した低融点アガロースゲルを70℃で10~15分間インキュベートし、アガロースゲルを完全に融解させる。

23. 直ちに45℃へ移し、5分間平衡化させる。

24. アガロースゲル融解溶液500 μLに対して10 μLの50xGELase Bufferを事前に用意し、45℃で加温しておき、平衡化終了後のアガロースゲル融解溶液
にこれを加える。
25. アガロースゲル融解溶液を 45℃に保ったまま、GELase enzyme を 3 µL (3U) 加える。
26. 45℃で30分間インキュベートし、アガロースのカルボハイドレイトを分解する。
27. 70℃で10分間インキュベートし、GELase enzyme を失活させる。
28. 濃度測定用に20 µLを分取し、残りの溶液に5 M酢酸アンモニウムを等量加え、密やかに転倒混和する。
29. 15,000 rpm, 20℃で10分間遠心し、先端を切り落とした1 mLサイズのビペットチップを用いて、不溶性ペレットを吸わないように、上清の95%を慎重に回収し、別マイクロチューブへ移す。
30. 回収した上清に対し、二倍量の100%エタノールを添加し、転倒混和後、4℃で30分間インキュベートする。
31. 15,000 rpm、20℃で10分間遠心し、上清を捨てる。軽く風乾させる。
32. 25 µLのTEバッファーを加え、再懸濁し、使用時まで4℃で保存する。
33. 回収したゲノムDNAの濃度測定を行うために、ミニゲルで0.7%アガロースゲルを作製し、手順28で回収した溶液及び手順32で再懸濁したゲノムDNA濃縮溶液を泳動し、Image Jを用いて濃度算出を行う。またこの際、ライゲーション反応に最も効率的なベクターとインサートDNAのモル比の算定もしておく。
34. 回収したゲノムDNAの濃度が算定されたら、以下の組成で試薬を氷上で混合し、ライゲーション反応溶液を調製する。なお、濃縮ゲノムDNA量は手順33で算出した最も効率的なベクターとインサートDNAのモル比に基づいて適宜調節する。
 ・Milli-Q to 20 µL
 ・10×Fast-Link Ligation Buffer 2 µL (1×)
 ・10 mM ATP 1 µL (0.5 mM)
 ・pWEB-TNC Vector (0.5 µg, ~6 kbp) 1 µL
 ・濃縮ゲノムDNA (0.3 µg, 30~45 kbp) 0.3 µg 程度
 ・Fast-Link DNA Ligase 1 µL
35. 室温で2時間インキュベートし、ライゲーション反応を行う。
36. 70℃で10分間インキュベートし、Fast-Link Ligaseの失活処理を行う。
37. 室温に戻し、使用時まで4℃で保存する。
38. in vitro パッケージングを行う2日前に、EPI100-T1®大腸菌株のフリーストックを起こし、白金耳を用いて抗生物質無添加 LB 寒天培地へ播種し、37℃で12時間、画線培養する。
39. in vitro パッケージングを行う1日前に、手順38で培養したEPI100-T1®大腸菌シングルコロニーをピックアップし、50mLの10mM MgSO₄ 添加 LB 液体培地へ播種し、37℃で12時間、振盪培養する。
40. in vitro パッケージングを行う当日に、手順39で培養した大腸菌培養液を5mL分取し、50mLの抗生物質無添加 LB 液体培地へ播種し、OD₆₀₀が0.8〜1.0に達するまで37℃で数時間、振蕩培養する。
41. OD₆₀₀が規定値に達したら、培養プラスコを直ちに氷上で冷やし、使用時まで4℃で保存する。
42. 手順37のライゲーション産物10μLに氷上で解凍したMaxPlax™ Lambda Packaging Extractsを25μL添加し、パッケージング反応を行う。なお、MaxPlax™ Lambda Packaging Extractsは1チューブあたり50μL入っており、この時使用しなかった残った25μLは直ちに−80℃へ移し、再凍結させる。
43. 数回ビベッティング操作を行い、パッケージング反応溶液を穏やかに懸濁する。この際、気泡を発生させるとファージ粒子の構造が壊れるので、気泡を発生させないように注意する。
44. 軽くスピンダウンし、30℃で90分間インキュベートし、パッケージング反応を行う。
45. 90分間のインキュベートが完了したら、手順42で再凍結させた残り25μLのMaxPlax™ Lambda Packaging Extractsを再解凍し、これをパッケージング反応溶液に添加し、再び30℃で90分間インキュベートし、パッケージング反応を行う。
46. ファージ希釈パッファーを調製する。
47. パッケージング反応が完了したら、パッケージング反応溶液にファージ希釈パッファーを540μL添加し、穏やかにボルテックスする。
48. ファージ希釈溶液にクロロホルムを25μL添加し、穏やかにボルテックス及び転倒混和する。もし一連の作業がうまく進んでいれば、クロロホルムと水層の境界面に白い濁が見られるはずである。ファージ希釈溶液は使用時まで4℃で保存する。
49. 手順 41 の EPI100-T1® 大腸菌培養液を 100 μL ずつ清潔なマイクロチューブに分注し、そこに手順 48 のフィージ希釈溶液を 10 μL ずつ添加していく。この際、OD₆₀₀値が上がらないように操作を水上で行い、かつ無菌操作で作業にあたる。

50. フィージ希釈溶液を加えた EPI100-T1® 大腸菌培養液を 37°C で 20 分間インキュベートし、フィージを大腸菌に感染させる。

51. アンビシン添加 LB 寒天培地に手順 50 のフィージ感染 EPI100-T1® 大腸菌を播種し、37°C で 14～16 時間インキュベートする。EPI100-T1® は DH5α よりも増殖が遅いため、コロニー形成と培養時間に注視する。

52. 寒天培地土にコロニーが形成されたら、4°C にて保存する。

53. 区画番号で分けられた新たなアンビシン添加 LB 寒天培地を用意し、ランダムに形成されたコロニーを無菌操作で 1 つずつピックアップし、区画化された培地土にコロニーを植え替えていく。これをマスタープレートとする。

54. 37°C で 8～14 時間インキュベートし、マスタープレート上にコロニーを形成させる。

55. コロニーが程良く育ったマスタープレートを 4°C で 30 分間冷却し、寒天表面を固化させる。

56. 殻菌処理を施したビロード布 (15×15 cm) を、レプリケーターの上に無菌操作でのせる。

57. マスタープレートのコロニー形成面をビロード布に対して垂直に均等に押し当て、コロニーをビロード布に定着させる。

58. 新たに準備したアンビシン添加 LB 寒天培地をコロニーが定着したビロード布に押しつけ、コロニーの転写を行う。これをレプリカプレートとし、コロニーハイブリダイゼーションに用いる。この作業の際、プレートの向きやプレート番号をきちんと確認しながら一連の操作を行う。

59. 無菌操作を心掛けながら、手順 56～58 の一連の操作をプレートの枚数分繰り返す。

60. コロニーが転写されたアンビシン添加 LB 寒天培地を 37°C で 8～14 時間インキュベートし、レプリカプレート上にコロニーを形成させる。コロニーが一部剥ぎ取られたマスタープレートは発泡スチロールの箱に入れ、低温室で保存し、コロニーが回復するのを待った。
4-2-3. コロニーハイブリダイゼーション法による目的クローンのスクリーニング

本項ではランダムプライムドレーベリング法による DIG (ジゴキシゲニン) 標識 DNA ブローブの作製、コロニーハイブリダイゼーション及びそのシグナル検出までを記述する。DIG システムを用いたコロニーハイブリダイゼーション法を用いて、第 4 章 2 節 2 項で獲得されたコロニーライブラリーから目的クローンのスクリーニングを行った。なお、全ての操作は Roche Applied Science 社が発刊する DIG Application Manual for Filter Hybridization に従って行った (Roche Applied Science, 2008)。また、大腸菌の培養時間に関してはオーバーコンフルエンスにならないように、培養の様子を逐次モニターしながら全て回収可能な最短時間で培養を停止させた。

- 変性溶液 (用時調製)
 5 M NaCl 30 mL (1.5 M)
 2 M NaOH 25 mL (0.5 M)
| Milli-Q で 100 mL にメスアップ | Total 100 mL |

- 中和溶液
 Tris (hydroxymethyl) aminomethane 12.11 g (1.0 M)
 NaCl 8.766 g (1.5 M)
 6 N HCl (pH 調整用) 適量
 2 N HCl (pH 調整用) 適量
| ↓pH メーターで pH 7.4 に調整 |
| ↓Milli-Q で 1 L にメスアップ | Total 100 mL Autoclaved |

- 脱イオン化ホルムアミド (用時調製)
 ホルムアミド 100 mL
 AG® 501-X8 Resin 5 g
| ↓4℃ で 1 時間程度ゆっくりと振盪し、脱イオン化処理を行う。 |
| ↓細胞培養の培地漉過に使用するボトルトップ型フィルターユニットを用い
で AG® 501-X8 Resin の除去及び濾過滅菌を行う。
↓ 使用時まで 4℃ で保存。ただし数時間以内に使い切る。

* 高 SDS パッファー (用時調製)

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS</td>
<td>14 g</td>
<td>(7%)</td>
</tr>
<tr>
<td>N-Lauroylsarcosine Sodium Salt</td>
<td>0.2 g</td>
<td>(0.1% (w/v))</td>
</tr>
<tr>
<td>キムミルク</td>
<td>4 g</td>
<td>(2% (w/v))</td>
</tr>
<tr>
<td>20×SSC 溶液</td>
<td>50 mL</td>
<td>(5×)</td>
</tr>
<tr>
<td>1 M リン酸 Na パッファー (pH 7.0)</td>
<td>10 mL</td>
<td>(50 mM)</td>
</tr>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>12.11 g</td>
<td>(1.0 M)</td>
</tr>
<tr>
<td>NaCl</td>
<td>8.766 g</td>
<td>(1.5 M)</td>
</tr>
<tr>
<td>脱イオン化ホルムアミド</td>
<td>100 mL</td>
<td>(50%)</td>
</tr>
</tbody>
</table>

↓ 脱イオン化ホルムアミド以外の試薬を適量の Milli-Q で溶かしておく。
↓ 脱イオン化ホルムアミドを使用直前に添加する。
↓ Milli-Q で 200 mL にメスアップ。100 mL ずつに分注しておく。

* 低ストリングェント洗浄パッファー

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>稀释</th>
</tr>
</thead>
<tbody>
<tr>
<td>20×SSC 溶液</td>
<td>50 mL</td>
<td>(2×)</td>
</tr>
<tr>
<td>10% SDS</td>
<td>5 mL</td>
<td>(0.1%)</td>
</tr>
<tr>
<td>Milli-Q で 500 mL にメスアップ</td>
<td></td>
<td>Total 500 mL</td>
</tr>
</tbody>
</table>

* 高ストリングェント洗浄パッファー

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>稀释</th>
</tr>
</thead>
<tbody>
<tr>
<td>20×SSC 溶液</td>
<td>2.5 mL</td>
<td>(0.1×)</td>
</tr>
<tr>
<td>10% SDS</td>
<td>5 mL</td>
<td>(0.1%)</td>
</tr>
<tr>
<td>Milli-Q で 500 mL にメスアップ</td>
<td></td>
<td>Total 500 mL</td>
</tr>
</tbody>
</table>

* 洗浄パッファー (Buffer I)

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>36.3 g</td>
<td>(0.1 M)</td>
</tr>
<tr>
<td>NaCl</td>
<td>26.2 g</td>
<td>(0.15 M)</td>
</tr>
<tr>
<td>6 N HCl (pH 調整用)</td>
<td>適量</td>
<td></td>
</tr>
<tr>
<td>2 N HCl (pH 調整用)</td>
<td>適量</td>
<td></td>
</tr>
</tbody>
</table>

↓ pH メーターで pH 7.5 に調整
↓Milli-Q で 3 L にメスアップ
Total 100 mL Autoclaved

ブルッキングバッファー (Buffer II) (用時調製)
Tween 20 250 µL (0.1%)
スキムミルク 12.5 g (5%)
洗浄バッファーで 250 mL にメスアップ 250 mL

Anti-DIG 抗体希釈溶液 (用時調製)
Tween 20 200 µL (0.2%)
Anti-Digoxigenin-AP, Fab fragments 5 µL (3.75 U)
洗浄バッファーで 100 mL にメスアップ 100 mL

抗体洗浄バッファー溶液 (用時調製)
 Tween 20 2 mL (0.2%)
洗浄バッファーで 1 L にメスアップ 1 L

検出バッファー (Buffer III)
Tris (hydroxymethyl) aminomethane 12.1 g (0.1 M)
NaCl 5.84 g (0.1 M)
6 N HCl (pH 調整用) 適量
2 N HCl (pH 調整用) 適量
↓pH メーターで pH 9.5 に調整
↓Milli-Q で 950 mL にメスアップ Total 950 mL Autoclaved
↓60°C 以下に冷めたら、1 M MgCl₂ を 50 mL 添加する。

1. DNA ブローブに用いる核酸配列には、CHO5 と CHO3 プライマーを用いた PCR で以前獲得された PfpgPLA la (A) [PfPLA 7] と OoPLA2-03 遺伝子の核酸配列をそれぞれ pCR®-Blunt II-TOPO® ベクター (Thermo Fisher Scientific 社, Waltham, MA, USA) にライゲーションした構築済みのプラスミドを用いる。
2. 手順 1 のプラスミドを形質転換した DH5α 大腸菌株フリーザーストックを起こし、白金耳を用いてカナマイシン添加 LB 寒天培地へ播種し、37°C で 12 時間、画線培養する。
3. 手順 2 で培養した DH5α 大腸菌シングルコロニーをピックアップし，4 mL の LB 液体培地へ播種し，37°C で 12 時間，振盪培養する。
4. 今回は安定した収量と純度でプラスマドの抽出が可能な High Pure Plasmid Isolation Kit (Roche Life Science 社, Indianapolis, IN, USA) を用いて，大腸菌培養液からプラスマドを精製する。なお，アルカリ SDS 法による抽出でも問題は無い。
5. 大腸菌培養液全量を 9,000 rpm で 30 秒間遠心し，集菌を行う。
6. 事前に 0.1 mg/mL 濃度になるように RNase A を添加した Suspension Buffer 250 µL を大腸菌培養液に添加し，しっかりと再懸濁する。
7. 再懸濁溶液に Lysis Buffer を 250 µL 添加し，5 分間 4–6 回回転混和する。
8. 室温で 5 分間インキュベートし，細胞溶胞と内在性 RNA 分解を行う。
9. 手順 8 終了後，直ちに氷冷 Binding Buffer を 350 µL 添加し，6~8 回回転混和する。
10. 冰上で 5 分間インキュベートし，中和反応及び変性プラスマド DNA の巻き戻しを行う。
11. 15,000 rpm, 4°C で 10 分間遠心し，不溶性物質を沈殿させる。
12. Collection Tube に High Pure Filter Tube をセットし，そこに手順 11 で得られた上清を静かに添加する。
13. 13,000 rpm, 4°C で 1 分間遠心し，Collection Tube に溶出された液を捨て，High Pure Filter Tube に Wash Buffer I を 500 µL 添加する。
14. 13,000 rpm, 4°C で 1 分間遠心し，Collection Tube に溶出された液を捨て，High Pure Filter Tube に Wash Buffer II を 700 µL 添加する。
15. 13,000 rpm, 4°C で 1 分間遠心し，Collection Tube に溶出された液を捨て，再度 13,000 rpm, 4°C で 1 分間遠心する。
16. High Pure Filter Tube を Collection Tube から取り外し，清潔なマイクロチューブにセットして，100 µL の Milli-Q を添加する。
17. 13,000 rpm, 4°C で 1 分間遠心し，得られたプラスマド抽出溶液は分光光度計を用いて，濃度を計測し，使用時まで 4°C で保存した。
18. 以下の組成で試薬を混合し，手順 17 で抽出したプラスマドを制限酵素で消化する。
 - Milli-Q to 50 µL
 - 10×H buffer 5 µL (1×)
抽出プラスミド溶液 5~20 μg

・EcoR I (12 U/μL) 1.67 μL (20 U)
・EcoR V (10 U/μL) 2 μL (20 U)

19. 37°C で、1~3 時間程度インキュベートし、完全消化した。
20. ミニゲルで、0.5×TBE、0.8% アガロースゲルを作製し、手順 19 の制限酵素処理溶液を全量電気泳動する。
21. 水動終了後、EtBr で 5~30 分程度の染色し、5~10 分間脱色を行う。
22. 70% 光量に設定した UV トランスイルミネーターに染色及び脱色したアガロースゲルをのせ、UV 照射下目視で目的 DNA 断片を含む領域を素早く (10 秒以内が望ましい) 切り出す。この時、切り出したバンドサイズはそれぞれ PfpgPLA 1a (A) [PfPLA 7] 遺伝子で 1,206 bp、OoPLA2-o3 遺伝子で 1,217 bp である。
23. 熱したニードルで底面に穴を開けたマイクロチューブを用意し、そこに目的 DNA 断片を含むアガロースゲルを入れる。
24. 底面にニードルで穴を開けたマイクロチューブを別の新たなマイクロチューブの上にのせ、フラッシュ遠心を行い、ゲルを物理的に破砕する。
25. 充分に破砕できたゲル片に TE 飽和フェノールを等量加え、良くポルテックスし、均一化させる。
26. TE 飽和フェノールを加えたゲル片を−80°C で 30 分以上放置し、完全に凍結させる。
27. 完全に凍結したゲル片を室温に戻し、徐々に自然解凍させる。
28. 充分に解凍されたゲル片を 15,000 rpm、20°C で 5 分間遠心し、上層の水層を回収する。
29. 回収された水層に等量の PCI を加え、良くポルテックスし、均一化させる。
30. 15,000 rpm、20°C で 5 分間遠心し、上層の水層を回収する。
31. 手順 29, 30 を再度繰り返し、回収された水層に 0.1 倍量の 3 M 酢酸ナトリウムと 2~2.5 倍量の 100% エタノールを添加する。
32. 充分に転倒混和し、−80°C で 10 分もしくは−30°C で 1 時間、エタノール沈殿を行う。
33. エタノール沈殿が完了したら、15,000 rpm、4°C で 30 分間遠心する。
34. ベレットを崩さないように、上清を捨てる
35. 70% エタノールを適量加え、15,000 rpm、4°C で 1~5 分間遠心し、DNA ペ
レットを軽くリンスする。
36. ベレットを崩さないように、上清を完全に取り除き、風乾する。
37. 12 µL の TE バッファーで DNA ベレットを再懸濁し、使用時まで 4°C で保存した。
38. 手順 37 で獲得された DNA 溶液を 1 µL 電気泳動し、濃度算出を行った。
39. DNA ブローブのラベリングは一度に 10~3,000 ng のテンプレート DNA 量が必要であるため、手順 38 で算出した濃度をもとにラベリング反応に用いる DNA 量を決める。今回は手順 38 時点で残っている 11 µL 全てを用いる。
40. 手順 37 で獲得された DNA 溶液に 4 µL の Milli-Q を加え、総量 15 µL とした DNA 溶液を 95°C に温めておいたサーマルサイクラーにセットし、95°C で 10 分間、DNA を熱変性させる。
41. 冷に食塩を適量加えた寒材を用意し、直ちに熱変性が完了した DNA 溶液を急冷する。そのまま氷上で 10 分間インキュベート。
42. 以下の組成で試薬を氷上で混合する。なお、Klenow Fragment は分子量が大きく活性を失いやすいため、ビペットティングによる混合や気泡を発生させるような激しい混合は避ける。
 - Hexanucleotide Mix, 10× 2 µL (1×)
 - DIG DNA Labeling Mix, 10× 2 µL (1×)
 - Klenow Fragment (2 U/µL) 1 µL (2 U)
43. 手順 42 で調製した試薬に手順 41 で急冷した DNA 溶液を素早く加え、気泡が発生しないように穏やかに混合し、37°C で 20 時間インキュベートする。
44. インキュベート完了後、0.2 M EDTA を 2 µL 添加し、ラベリング反応を停止させた。
45. 4 M 塩化リチウムを 2 µL、氷冷 100% エタノールを 60 µL 添加し、−30°C で 30 分間インキュベートする。
46. 15,000 rpm、4°C で 15 分間遠心し、ベレットを崩さないように上清を取り除く。
47. 冷冷 70% エタノールを 180 µL 添加し、15,000 rpm、4°C で 2 分間遠心し、軽くリンスを行う。
48. 上清を完全に取り除き、風乾を行う。
49. 風乾後に TE バッファーを 20 µL 添加し、再懸濁し、使用時まで−20°C で保存した。この時、テンプレート DNA の初期濃度及び反応時間から最終的に
獲得された DIG 標識 DNA ブローブ濃度を概算で計算しておく。なお、事前にもしは以降の実験と平行して、ドットプロットなどによってブロー
ブが正常に機能するかの検証実験を行っておくと良い。
50. 第 4 章 2 節 2 項で作製したコロニーが穏良く育ったレプリカプレートを 4°C
で 30 分間しっかりと冷却し、寒天表面を固化させる。
51. 実験台をラップで丁寧に覆い、作業に則し手袋・ムスを着用する。以降の
作業は手袋・ムスを着用し、塵などが混入しないように極力静かに作
業を行う。
52. Hybond-N+ (GE Healthcare UK Ltd., little chalfont, UK) メンブレンを円盤状
に切り抜き、認識番号、向き、大腸菌の区画番号等の情報をメンブレン端
に油性ボールペンで記入する。メンブレンは決して素手で触れず、清潔な
ビンセットなどを用いて取り扱う。
53. メンブレンを冷却したプレートのコロニー形成面に静かにのせる。この時、
ビンセットを用いて端の方からゆっくりと気泡が入りないようにのせる。
54. メンブレンにコロニーが転写されるまで 1 分間待ち、その後プレートから
静かにメンブレンを引き剥がす。
55. ラップの上にキムタオルもしくはプロッティング用濾紙をのせ、その上に
メンブレンを静かに置き、軽く吸水する。この時、コロニー転写面を必ず
上に向け、キムタオルに接しないようにする。
56. 清潔なシャーレのフタに、変性溶液を 1.5 mL 滴下し、その上にメンブレン
を端からそっとのせ、変性溶液が全体に行き渡るようにし、15 分間室温で
そのままインキュベートし、菌体を変性させる。
57. 変性溶液に浸したメンブレンを新たなキムタオルの上にのせ、軽く吸水・
風乾を行う。この時コロニー転写面を必ず上に向け、キムタオルに接しな
いようにする。
58. 清潔なシャーレのフタに、中和溶液を 1.5 mL 滴下し、その上にメンブレン
を端からそっとのせ、変性溶液が全体に行き渡るようにし、15 分間室温で
そのままインキュベートし、中和反応を行う。
59. 中和溶液に浸したメンブレンを新たなキムタオルの上にのせ、軽く吸水・
風乾を行う。この時コロニー転写面を必ず上に向け、キムタオルに接しな
いようにする。
60. 清潔なシャーレのフタに、2×SSC 溶液を 1.5 mL 滴下し、その上にメンブレン
ンを端からそっとのせ，2×SSC 溶液が全体に行き渡るようにし，10 分間室温でそのままインキュベートし，平衡化を行う。

61. シャーレから 2×SSC 溶液を軽く取り除き，メンブレンをシャーレに入れただまま，UV トランスイルミネーター (ゲル撮影用の UV トランスイルミネーターで可) にセットし，片面 1 分間ずつ UV を照射し，クロスリンク反応を行う。この作業は 80°C，30 分間ベーキングで代用しても良い。

62. 1 mg/mL の濃度となるように Proteinase K を 2×SSC 溶液に溶かし，Proteinase K 希釈溶液を調製し，メンブレンのコロニー転写面に Proteinase K 希釈溶液を 1.5 mL 滴下し，メンブレン全体に Proteinase K 希釈溶液を良く駆逐させると。

63. シャーレにフタをし，パラフィルムで側面をしっかりと密閉し，37°C で 1 時間以上インキュベートし，菌体に含まれるタンパク質の分解を行う。メンブレンが乾燥しないように定期的にメンブレンの状態を確認し，メンブレン全体に Proteinase K 希釈溶液が行き渡るようにする。

64. インキュベートが完了し，コロニーが充分に溶解したことを確認したら，メンブレンを取り出し，Milli-Q で湿らせたブロッティング用濾紙でメンブレンを挟み込み，上からガラスビペット等を転がし，ブロッティング用濾紙を上から強く押さえ，デブリスを取り除く。

65. ブロッティング用濾紙を静かに剥ぎ取り，デブリスが充分に取り除けているか確認する。デブリスが充分に取り除けるまで，手順 64 の操作を数回繰り返す。

66. デブリスが充分に除去できたメンブレンはハイプリダイゼーションの準備が整うまでの間，湿らせたブロッティング用濾紙に挟み込んで保存し，乾燥を防ぐ。中長期保存したい場合は湿らせた状態で 4°C 保存。

67. デブリスを除去したメンブレンをハイプリバックの中に投入し，ウォーターバスで 45°C に温めていた高 SDS パッファーを 100 mL 投入し，45°C で 1 時間プレハイブライダイゼーションさせる。直径 90 mm 程度のメンブレンならば 8-12 枚まとめてハイプリバックに投入でき，一度に複数枚のメンブレンをハイプリダイゼーションすることが可能である。

68. 手順 49 で保存していた DIG 標識 DNA プローブを 98°C に温めておいたサーマルサイクラーにセットし，98°C で 5 分間インキュベートし，DIG 標識 DNA プローブを熟変性させる。
69. 氷に食塩を適量加えた寒材を用意し、熟変性が完了した DIG 標識 DNA プローブを直ちに急冷する。そのまま氷上で 10 分間インキュベート。
70. プレハイブリダイゼーション終了後、高 SDS バッファーを回収し、事前に 45℃で温めておいた 100 mL の高 SDS バッファーに急冷した DIG 標識 DNA プローブを加え、その溶液をメンブレンの入ったハイプリバックへ直ちに投入する。
71. 45℃で～12 時間程度、適度に震盪しながらハイブリダイゼーションを行う。
72. 適切な大きさの容器に低ストリーヌジェント洗浄バッファーを 250 mL 注ぎ、ハイブリダイゼーションの完了したメンブレンを素早く浸し、室温で 5 分間震盪しながら、メンブレンを洗浄する。
73. 洗浄後、低ストリーヌジェント洗浄バッファーを捨て、新たに低ストリーヌジェント洗浄バッファーを 250 mL 注ぎ、手順 72 同様にメンブレンの洗浄を行う。
74. 洗浄終了後、低ストリーヌジェント洗浄バッファーを捨て、68℃に温めておいた高ストリーヌジェント洗浄バッファーを 250 mL 注ぎ、68℃で 15 分間震盪しながら、メンブレンの洗浄を行う。
75. 洗浄終了後、高ストリーヌジェント洗浄バッファーを捨て、新たに高ストリーヌジェント洗浄バッファーを 250 mL 注ぎ、手順 74 同様にメンブレンの洗浄を行う。
76. 洗浄終了後、洗浄バッファーを 300 mL 注ぎ、1 分間震盪しながらメンブレンの洗浄を行う。この操作を 2 回繰り返す。
77. 洗浄終了後、250 mL のブロッキングバッファーにメンブレンを浸し、4℃で 90 分間震盪しながらブロッキング反応を行う。
78. ブロッキング完了後、洗浄バッファーでメンブレンを軽く浸ぎ、Anti-DIG 抗体希釈溶液が 100 mL 注がれた新たな容器に、メンブレンを浸し、室温で 30 分間震盪しながら抗体のクロスリンク反応を進めた。
79. クロスリンク反応完了後、抗体洗浄バッファーが 300 mL 注がれた新たな容器に、メンブレンを浸し、室温で 15 分間震盪しながら洗浄を行う。この作業を 2 回繰り返す。
80. 新たな容器に洗浄バッファーを 100 mL 注ぎ、メンブレンの平衡化を 5 分間行う。
81. 90 mm 直径のメンブレン 1 枚あたり、アルカリフォスターゼの化学発光基

50
質である CDP-Star (25 mM) を 1 μL、検出バッファーを 1 mL 使用する。メンブレンの枚数に応じた CDP-Star と検出バッファーを用意し、それを混合し、使用時まで氷上で保存する。

82. 使用済みの X 線フィルムもしくは下敷きの上にラップを丁寧に敷き、その上に平衡化が完了したメンブレンをシワが生じないように並べた。なお、以降の作業は暗室にて行う。

83. メンブレンに CDP-Star 希釈溶液を滴下し、その上からラップを静かに被せ、メンブレン隅々まで CDP-Star を行き渡らせる。以降、数分以内感光作業を完了する。

84. CDP-Star の余分な液を拭き取り、下敷き及びメンブレンをラップに包んだ手順 83 の状態で X 線フィルムカセットにセットし、暗室の電気を消灯した。以降作業は全て消灯下もしくは赤色灯下で行う。

85. X 線フィルムを X 線フィルムカセットにセットし、X 線フィルムカセットを閉じ、そのまま感光に移る。今回は 40 分間の感光を行った。

86. 感光完了後、現像液、停止液、定着液をトレイに出し、X 線フィルムを X 線フィルムカセットから取り出し、各液に数十秒〜数分間浸し、現像作業を行う。現像が完了し、現像液等の片付けが全て完了したら、電気をつけ、フィルムを水洗いし、乾燥させる。

87. 現像したフィルムをもとに目的クローンを選定する。マスタープレートから目的クローンをもつコロニーを取り出し、画線培養、コロニーの純化、制限酵素を用いたクローンの均一性確認操作を行った。

88. 目的クローンを持つと予測された大腸菌コロニーをアンピシリン添加 LB 液体培地で 37°C、8〜12 時間振盪培養し、大腸菌培養液 1 mL に 50% グリセロール溶液を終濃度 12〜15%になるように添加し、グリセロールストックを作製した。グリセロールストックは−80°C で保存した。

89. 手順 88 で使用した大腸菌培養液と以下の試薬を氷上で混合した。

- Milli-Q 4.62 μL
- 2×PCR Buffer for KOD FX 10 μL (1×)
- 2 mM dNTPs 4 μL (0.4)
- CHO5 プライマー (25 μM) 0.24 μL (0.6 μM)
- CHO3 プライマー (25 μM) 0.24 μL (0.6 μM)
- 大腸菌培養液 0.5 μL (2.5%)
90. 以下の条件で、コロニーPCR による二次スクリーニングを実施した。

<table>
<thead>
<tr>
<th>ステップ</th>
<th>時間/温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predenature</td>
<td>94°C, 2 分間</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Denature</td>
<td>98°C, 10 秒</td>
</tr>
<tr>
<td>× 25サイクル</td>
<td></td>
</tr>
<tr>
<td>Annealing, Extension</td>
<td>68°C, 2 分間</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preservation</td>
<td>4°C, ∞</td>
</tr>
</tbody>
</table>

91. PCR 終了後、電気泳動を行い増幅産物の有無及び分子量から判定を行う。

4-2-4. コスミドクローンの取扱いとその抽出及び塩基配列決定

本項では前項で獲得された陽性クローンからのコスミド DNA 抽出及び、その配列決定までを記す。なお、本項で記することは主に QIAGEN Large-Construct Kit (QIAGEN 社, Hilden, Germany) を用いたラージスケールからのコスミド DNA 抽出法であり、アルカリ SDS (アルカリ ミニプレップ) 法によるコスミド DNA 抽出は第 4 章 2 節 9 項のプラスミド DNA 抽出を参照されたい。また、コスミド DNA の物理的剪断を避けるため、コスミド DNA の取扱いは全てデカントもしくは先を切り捨てた 1 mL ピペットチューブで行った。

100 mM ATP 溶液

<table>
<thead>
<tr>
<th>Adenosine-5'-triphosphate</th>
<th>0.3 g</th>
<th>(100 mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ 25 mM Tris-HCl (pH 8.0) で 5 mL にメスアップ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ Total 5 mL Filtered (0.22 μm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ 小分けに分注し, -20°C で保存。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. 陽性クローンである大腸菌フライズストックを起こし、白金耳を用いてアンピシンリン添加 LB 寒天培地に播種し、37°C で 8~12 時間培養する。
2. 形成されたコロニーを 5 mL のアンピシンリン添加 LB 液体培地に播種し、37°C で 24 時間培養する。この時予備として数本、同時に振っておく。
3. 手順 2 で前培養した大腸菌培養液 1 mL を 500 mL の新たなアンピシンリン添加 LB 液体培地に播種し、37°C で 12~16 時間培養する。前培養の残りの大腸菌培養液と予備で振っていたものはそのまま 12~16 時間培養し、ミニプレップアルカリ SDS 法でスミッド DNA を抽出し、制限酵素によるクローン間の均一性評価を行う。
4. 本培養が終了した 500 mL の大腸菌培養液を遠心瓶に入れ、6,000×g、4°C で 15 分間遠心し、集菌を行う。
5. 事前に 100 μg/mL 濃度となるように RNase A 添加した Buffer P1 20 mL を大腸菌ベレットに添加し、しっかりと再懸濁する。
6. 充分に再懸濁した大腸菌再懸濁液に Buffer P2 を 20 mL 添加し、室温で 4~6 回転倒混和する。室温で 5 分間インキュベートし、細胞溶解と内在性 RNA 分解を行う。
7. 冷蔵 Buffer P3 を手順 6 の細胞溶解液に素早く加え、4~6 回転倒混和する。冷蔵で 10 分間インキュベートし、中和反応及び変性スミッド DNA の巻き戻しを行う。
8. 20,000×g、4°C で 30 分間遠心し、スミッド DNA を含む上清を回収する。
9. Milli-Q で湿らせた Folded filters をコニカルチューブに折り畳んでセットし、スミッド DNA を含む上清を Folded filters に滴下し、濾過する。
10. 0.6 倍量のイソプロパノールを濾過された上清に加え、転倒混和し、直ちに 15,000×g、4°C で 30 分間遠心する。
11. 上清を取り除き、70% エタノールを 5 mL 加え DNA ベレットを洗浄し、15,000×g、4°C で 15 分間遠心し、DNA ベレットを崩さないように上清を取り除く。
12. DNA ベレットが沈殿しているコニカルチューブをキムタオルの上に逆さまにして置き、2~3 分間風乾を行う。風乾させ過ぎると、溶け難くなるので注意する。コニカルチューブ壁面に水分が残っている場合はキムワイプなどを利用して取る。
13. 風乾した DNA ベレットに Buffer EX を 9.5 mL 添加し、再懸濁を行う。ただ
し、コスミド DNA 懸濁は物理的剪断を防ぐため、穏やかに行う。
14. 200 µL の ATP-Dependent Exonuclease と 300 µL の 100 mM ATP 溶液を再懸濁 DNA 溶液に加え、穏やかに混ぜ、37°C で 1 時間インキュベートし、直鎖状 DNA の限定分解を行う。
15. QIAGEN-tip 500 に Buffer QBT を 10 mL 滴下し、平衡化を行う。
16. 直鎖状 DNA の限定分解が完了した DNA 溶液に Buffer QS を 10 mL 加え、それを Buffer QBT が自然流下で全て溶出し平衡化が完了した QIAGEN-tip 500 に全量滴下する。
17. QIAGEN-tip 500 から全ての液が溶出したら、30 mL の Buffer QC を QIAGEN-tip 500 に滴下し、洗浄を行う。この操作を 2 回繰り返す。
18. 事前に 65°C に温めておいた 15 mL の Buffer QF を QIAGEN-tip 500 に静かに滴下し、QIAGEN-tip 500 から DNA を溶出させる。
19. 0.7 倍量のイソプロパノールを溶出 DNA に加え、転倒混和し、直ちに 15,000×g、4°C で 30 分間遠心する。
20. 上清を取り除き、70% エタノールを 5 mL 加え DNA ベレットを洗浄し、15,000×g、4°C で 15 分間遠心し、DNA ベレットを崩さないように上清を取り除く。
21. DNA ベレットを 5~10 分間風乾させ、2 mL の TE バッファーで穏やかに再懸濁する。風乾させ過ぎると、溶け難くなるので注意する。コンナルチューブ壁面に水分が残っている場合はキムワイブなどを利用して取り除く。
22. 分光光度計を用いて、濃度及び純度を算出した。使用時まで 4°C で保存。
23. 精製したコスミド DNA の一部を適当な制限酵素で消化し、目的クローンが獲得できているか、サンプル間の均一性などを確認する。
24. 精製コスミドをテンプレートに M13 Forward (-47) と T7 Promoter シーケンスプライマーをそれぞれ用いて、サイクルシークエンスを行い、コスミドに挟まれたゲノム DNA の 5' と 3' 末端領域の配列決定を行った。サイクルシークエンス法に関しては第 4 章 2 節 10 項を参考されたい。
25. コスミド DNA 全長の一次構造決定は北海道システムサイエンス株式会社による次世代シークエンサー GS FLX+システム (454 Life Sciences, a Roche company, Branford, CT, USA) を用いた委託解析によって行われた。

4-2-5. ゲノミック PCR
本項ではKOD–Plus–DNA Polymerase（TOYOBO Co., Ltd., Osaka, Japan）を用いたゲノミックPCRの基本的な操作について記述する。本項と次項に記述する操作で增幅されるDNA断片は全て平滑末端構造を形成するため、第4章2節7項ではTOPOシステムを用いた平滑末端クローニングに関して記述をしている。突出末端構造を形成するTaq polymeraseによるPCR及び突出末端クローニング法に関しては第4章4節2項を参考されたい。以降の操作で使用されるゲノムDNAはホンハブ（No.3）、トカラハブ（No.10）、サキシマハブ（No.16）、ヒメハブ（No.7と24）からそれぞれ抽出されものである。なお、本実験で使用した合成オリゴDNAの詳細とその組み合わせに関しては、第7章に別途記載しているので参照されたい。全てのPCRは事前にAmplify3及びAmplify4ソフトウェア（Bill Engels, 2015, University of Wisconsin）を用いて、PCRのシミュレーションとテスト、そしてプライマーダイマーの有無などの確認作業を行い、実施された。

1. 以下の組成で試薬を氷上で混合する。

<table>
<thead>
<tr>
<th>試薬</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>to 50 µL</td>
</tr>
<tr>
<td>5×PCR Buffer for KOD–Plus–</td>
<td>5 µL (1×)</td>
</tr>
<tr>
<td>2 mM dNTPs</td>
<td>5 µL (0.2 mM)</td>
</tr>
<tr>
<td>25 mM MgSO4</td>
<td>3 µL (1.5 mM)</td>
</tr>
<tr>
<td>センスプライマー（25 µM）</td>
<td>0.6 µL (0.3 µM)</td>
</tr>
<tr>
<td>アンチセンスプライマー（25 µM）</td>
<td>0.6 µL (0.3 µM)</td>
</tr>
<tr>
<td>ゲノムDNA（100 ng/µL）</td>
<td>0.52.0 µL (14 ng/µL)</td>
</tr>
<tr>
<td>KOD–Plus–DNA Polymerase（1 U/µL）</td>
<td>1 µL (1 U)</td>
</tr>
</tbody>
</table>

Total 50 µL

2. 以下のサイクル条件で、ゲノミックPCRを行った。通常は3ステップでPCRを行うが、エキストラバンドが確認できた場合とプライマーTm値が極端に高い場合は2ステップでPCRを行った。なお、3ステップのAnnealing温度はプライマーセットのTm値を参考に±5℃を目安にその都度変更し行った。

*3 ステップ

<table>
<thead>
<tr>
<th>ステップ</th>
<th>温度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predenature</td>
<td>94℃</td>
<td>2 分間</td>
</tr>
<tr>
<td>Denature</td>
<td>98℃</td>
<td>10 秒間</td>
</tr>
<tr>
<td>Annealing</td>
<td>X℃</td>
<td>30 秒間</td>
</tr>
</tbody>
</table>

×25サイクル
Extension 68°C, 1 分/kbp
↓
Preservation 4°C, ∞

2 ステップ

Predenature 94°C, 2 分間
↓
Denature 98°C, 10 秒間 × 25 サイクル

Annealing, Extension 68°C, 1 分/kbp
↓
Preservation 4°C, ∞

3. 0.5×TBE パッファーを用いて、0.5~2% アガロースゲルを適宜作製し、PCR 産物を電気泳動した。

4. アガロースゲルを EtBr で染色、脱色し、UV トランスイルミネーターで核酸の増幅を確認する。PCR 産物はクローニングまで 4℃ で保存する。長期保存の場合は EDTA を加えるかもしくは増幅断片の精製を行っておく。アガロースゲルから特定バンドの切り出し・精製を行う場合は第 4 章 2 節 3 項 手順 20-38 を参考されたい。

5. Image J ソフトウェアを用いて、增幅断片のサイズ及び DNA 濃度を推定する。またこの際、ライゲーション反応に最も効率的なベクターとインサート DNA のモル比の算定もしておく。

4-2-6. Ligation-mediated PCR

本項では KOD –Plus– DNA Polymerase と TaKaRa LA PCR™ in vitro Cloning Kit (Takara Bio Inc., Shiga, Japan) を用いた Ligation-mediated PCR の基本的な操作について記述する。本項と前項に記述する操作で增幅される DNA 断片は全て平滑末端構造を形成するため、第 4 章 2 節 7 項では TOPO システムを用いた平滑末端クローニングに関して記述をしている。突出末端構造を形成する Taq polymerase による PCR 及び突出末端クローニング法に関しては第 4 章 4 節 2 項を参考されたい。以降の操作で使用されるゲノム DNA はホンハブ (No. 3), トカラハブ (No. 10), サキシマハブ (No. 16), ヒメハブ (No. 7 と 25) からそれぞれ抽出されものである。なお、本実験で使用した合成オリゴ DNA の詳細とその組み合わせに関しては、第 7 章に別途記載しているので参照されたい。全ての PCR
は事前に Amplify3 及び Amplify4 ソフトウェア（Bill Engels, 2015, University of Wisconsin）を用いて、PCR のシミュレーションとテスト、そしてプライマーダイマーの有無などの確認作業を行い、実施した。

1. EcoRI, Hind III, Pst I, Sal I, Sau3A I, Xba I 及びそれら 6 つの制限酵素と対合末端を形成することが可能な制限酵素を使用でき、それぞれの制限酵素で 20 μg のゲノム DNA を完全に消化する。消化時間及び消化温度などは制限酵素の性質に従う。
2. 制限酵素で完全消化された DNA 溶液に、等量の TE 飽和フェノールを添加し、良くブレントし、制限酵素の変性・失活処理を行う。
3. 15,000 rpm, 20℃ で 5 分間遠心し、上清を清潔なマイクロチューブに移す。
4. 等量の PCI を回収した上清に加え、良くブレントし、制限酵素の変性・失活処理を行う。
5. 15,000 rpm, 20℃ で 5 分間遠心し、上清を清潔なマイクロチューブに移す。
6. 手順 4, 5 を再度繰り返す。
7. 回収した上清に 0.1 倍量の 3 M 酢酸ナトリウムと 2~2.5 倍量の氷冷 100% エタノールを添加し、良く転倒混和する。
8. −80℃ で 10 分間もしくは−30℃ で 1 時間インキュベートし、エタノール沈殿を行う。
9. 15,000 rpm, 4℃ で 30 分間遠心し、DNA ベレットに注意しながら、上清を取り除く。
10. 70% エタノールを適量滴下し、15,000 rpm, 4℃ で 2~5 分間遠心し、DNA ベレットに注意しながら、マイクロビペットを用いて上清を全て取り除く。
11. 制限酵素処理ゲノム DNA ベレットを 1~10 分間風乾させる。
12. 精製された制限酵素処理ゲノム DNA ベレットに Milli-Q を 10 μL 加え、再懸濁する。
13. 用いた制限酵素で切断・形成された末端配列に対応する Cassette を TaKaRa LA PCR™ in vitro Cloning Kit から取り出し、以下の組成で試薬を水上で混合する。ただし、Sau3A I Cassette を 6 塩基対認識の制限酵素で消化したゲノム DNA にライゲーションする場合は Sau3A I Cassette を 10 倍希釈して使用する。

・制限酵素処理ゲノム DNA 10 μL (~20 μg)
・各種対合 Cassette 溶液 (20 ng/µL) 2.5 µL (50 ng)
・Ligation High 56.25–12.5 µL (0.5–1 倍量)

14. 16°C, 30 分間~1 時間インキュベートし, ライゲーションを行う。
15. 手順2~11 同様に, フェノール・PCI 抽出, エタノール沈殿を行い, Cassette 付加ゲノム DNA を精製する。
16. 精製された Cassette 付加ゲノム DNA ベレットに 5 µL の TE バッファーを加え, 再懸濁する。使用時まで 4°C で保存する。
17. 以下の組成で試薬を氷上で混合する。
 • Milli-Q to 50 µL
 • 5×PCR Buffer for KOD –Plus– 5 µL (1×)
 • 2 mM dNTPs 5 µL (0.2 mM)
 • 25 mM MgSO₄ 3 µL (1.5 mM)
 • Cassette Primer C1 (25 µM) 0.6 µL (0.3 µM)
 • ゲノム対応プライマー (25 µM) 0.6 µL (0.3 µM)
 • Cassette 付加ゲノム DNA 0.5–1.0 µL
 • KOD –Plus– DNA Polymerase (1 U/µL) 1 µL (1 U)

Total 50 µL

18. 以下のサイクル条件で 1st PCR を行った。
 ♦ 2 ステップ
 Predenature 94°C, 2 分間
 ↓
 Denature 98°C, 10 秒間 × 20 サイクル
 Annealing, Extension 68°C, 10 分間
 ↓
 Preservation 4°C, ∞

19. 0.5×TBE バッファーを用いて, 0.5–2% アガロースゲルを適宜作製し, PCR 産物を電気泳動した。
20. アガロースゲルを EtBr で染色, 脱色し, UV トランスイルミネーターで核酸の増幅を確認する。単一バンドの増幅が確認されたら, クローニングまで PCR 産物を 4°C で保存する。長期保存の場合は EDTA を加えるかもしくは増幅断片の精製を行っておく。増幅が確認できない場合は次のステップに進む。
21. 以下の組成で試薬を水上で混合する。

<table>
<thead>
<tr>
<th>試薬</th>
<th>体積</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>to 50 μL</td>
<td>リポソーム包み結合のための試薬</td>
</tr>
<tr>
<td>5×PCR Buffer for KOD –Plus–</td>
<td>5 μL (1×)</td>
<td>PCRのための試薬</td>
</tr>
<tr>
<td>2 mM dNTPs</td>
<td>5 μL (0.2 mM)</td>
<td>dNTPのための試薬</td>
</tr>
<tr>
<td>25 mM MgSO₄</td>
<td>3 μL (1.5 mM)</td>
<td>Mgのための試薬</td>
</tr>
<tr>
<td>Cassette Primer C2 (25 μM)</td>
<td>0.6 μL (0.3 μM)</td>
<td>ネストされたプライマーのための試薬</td>
</tr>
<tr>
<td>ゲノム対応 Nested プライマー(25 μM)</td>
<td>0.6 μL (0.3 μM)</td>
<td>ネストされたプライマーのための試薬</td>
</tr>
<tr>
<td>1st PCR 増幅産物</td>
<td>0.5~1.0 μL</td>
<td>1st PCRのための試薬</td>
</tr>
<tr>
<td>KOD –Plus– DNA Polymerase (1 U/μL)</td>
<td>1 μL (1 U)</td>
<td>DNAポリメラーゼのための試薬</td>
</tr>
</tbody>
</table>

Total 50 μL

22. 以下のサイクル条件で 2nd PCR (Nested PCR) を行った。

2 ステップ

<table>
<thead>
<tr>
<th>ステップ</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predenature</td>
<td>94°C, 2 分間</td>
</tr>
<tr>
<td>Denature</td>
<td>98°C, 10 秒</td>
</tr>
<tr>
<td>Annealing, Extension</td>
<td>68°C, 5 分間</td>
</tr>
<tr>
<td>Preservation</td>
<td>4°C, ∞</td>
</tr>
</tbody>
</table>

×25 サイクル

23. 0.5×TBE バッファーを用いて、0.5~2% アガロースゲルを適宜作製し、PCR産物を電気泳動した。

24. アガロースゲルを EtBr で染色、脱色し、UV トランスイルミネーターで核酸の増幅を確認する。単一バンドの増幅が確認されたら、最適伸長時間で再度 2nd PCR を行い、クローニングまで PCR 産物を 4°C で保存する。長期保存の場合は EDTA を加えるかもしくは増幅片の精製を行っておく。増幅バンドが複数存在し、アガロースゲルから特定バンドの切り出し・精製を行いたい場合は第 4 章 2 節 3 項 手順 20-38 を参考されたい。

25. Image J ソフトウェアを用いて、増幅断片のサイズ及び DNA 濃度を推定する。またこの際、ライゲーション反応に最も効率的なベクターとインサート DNA のモル比の算定もしておく。

4-2-7. TOPO クローニング

本項では KOD –Plus– DNA Polymerase で増幅された平滑末端をもつ DNA 断片
を pCR®-Blunt II-TOPO®ベクター (Thermo Fisher Scientific 社, Waltham, MA, USA) にクローニングする操作を記述する。突出末端構造を形成する Taq polymerase で増幅された突出末端をもつ DNA 断片のクローニング法に関しては第 4 章 4 節 2 項を参考されたい。

1. 以下の組成で試薬を一次で混合する。本来, PCR 産物の添加量は事前に算出したライゲーション反応に最も効率的なベクターとインサート DNA のモル比に基づいて適宜調節する。TOPO クローニングにおける最も効率的なモル比は TOPO ベクター：インサート DNA = 1 : 0.5~2 である。また, 通常は総体積 6 µL の反応系であるが, 試薬節約のため半分量で反応を行う。

- pCR®-Blunt II-TOPO®ベクターの量はベクターとインサート DNA のモル比に基づいてさらに減らすことも可能である。
 - Milli-Q to 3 µL
 - Salt Solution 0.5 µL
 - Fresh PCR product 0.5 µL (Molar ratio, 0.5~2)
 - pCR®-Blunt II-TOPO® vector (10 ng/µL) 0.5 µL (Molar ratio, 1)

2. 良く混合し, 室温で 5~30 分間インキュベートする。
3. 使用時まで 4°C で保存する。

4-2-8. 形質転換及び大腸菌培養

本項では組換えプラスミド DNA の大腸菌コンピメントセル (DH5α, JM109) への導入, 及び形質転換体の培養に関して記述する。以降, 操作に関しては無菌操作で行う。

1. 事前に小分けに分注した大腸菌コンピメントセル 20 µL を-80°C ディープフリーザーから取り出す。
2. 大腸菌コンピメントセルを直ちに氷上へおき, 素早く 2 µL のライゲーション溶液またはプラスミド溶液を添加する。
3. 軽く混合し, スピンダウンを行い, 氷上で 30 分間インキュベートする。
4. 30 分間の氷上インキュベート完了後, 直ちに大腸菌コンピメントセルの入ったマイクロチューブを事前に温めておいた 42°C ブロックインキュベーターで 45~60 秒間インキュベートし, ヒートショック処理を行う。
5. 大腸菌コンビペットセルを素早く氷上に戻し、氷上で 3 分間インキュベートする。

6. 3 分間の氷上インキュベート完了後、大腸菌コンビペットセルに、事前に融解させておいた SOC 培地を 100 µL 添加し、30~60 分間 37℃ で振盪しながら前培養を行う。なお、β-ラクタマーゼをコードするアンピシリン耐性遺伝子が組み込まれたプラスミドを用い、その形質転換体をアンピシリン添加培地に播種する場合、プレ培養の必要は無い。タンパク質の合成を阻害するカナマイシン、テトラサイクリン、クロラムフェニコールを培地に添加した場合は必ず、このプレ培養を行う。

7. 適当な抗生物質とカラーセレクション試薬である X-gal が含まれた LB 寒天培地を用意し、プレ培養終了後の大腸菌培養液に無菌操作で 1 M IPTG を 20 µL 添加し、軽く混合スピインダウンした後、培地に播種しコンラージ棒で塗り広げる。なお、DH5α は LacIq 欠失変異体であるため、IPTG を添加する必要は無い。

8. 37℃ で 10~14 時間インキュベートし、コロニーを形成させる。

9. コロニーが形成されたプレートは液体培地に植菌するまで 4℃ で保存する。

10. 試験管に 4~5 mL ずつ分注されたオートクレープ滅菌済みの LB 液体培地を必要本数用意し、適当な抗生物質を無菌操作で必要量滴下する。

11. 滅菌された細胞枝でコロニーをピックアップし、抗生物質を添加した LB 液体培地へ播種する。

12. 37℃ で 8~12 時間振盪培養する。

13. 培養終了後、試験管を回収し、プラスミド DNA 抽出に移るまで 4℃ で保存する。

4-2-9. プラスミド DNA 抽出（アルカリ SDS 法）

本項ではアルカリ SDS 法によるプラスミド DNA の抽出操作に関して記述する。

1. LB 液体培地で一晩培養した大腸菌培養液を 1.5 mL マイクロチューブに適量移し、6,500 rpm, 4℃ で 5 分間遠心し、集菌を行う。

2. 菌体ペレットを崩さないように、上清をしっかりと取り除き、Solution 1 を 100 µL 添加し、ポルテックスを 5 分間行い、しっかりと菌体ペレットを再懸濁する。
3. Solution II を用時調製する。
4. 菌体懸濁液に Solution II を 200 μL 添加し、4~6 回転し、5 分間インキュベートし、細胞溶解を行う。
5. 5 分間のインキュベート後、直ちに氷冷 Solution III を 150 μL 添加し、室温で 6~8 回転し、5 分間インキュベートし、中和反応とプラスミド DNA の巻き戻しを行う。
6. PCI を 100 μL 添加し、5 分間ボルテックスを行い、しっかりと混合する。
7. 15,000 rpm、室温で 5 分間遠心し、中間層を吸わないように上清を 400 μL、清潔なマイクロチューブに回収する。
8. 回収した上清に 0.1 倍量の 3 M 酢酸ナトリウムと 2~2.5 倍量の 100% エタノールを添加し、5 分間遠心し、転倒混和にて良く混合する。
9. 4°C もしくは室温で 5 分間インキュベートし、エタノール沈殿を行う。
10. 15,000 rpm、4°C で 5 分間遠心し、核酸ベレットを崩さないように、上清をしっかりと取り除く。
11. 回収した核酸ベレットに 70% エタノールを適量加え、15,000 rpm、4°C で 2 分間遠心し、核酸ベレットを軽くリソスする。
12. 上清をしっかりと取り除き、核酸ベレットを 10~15 分間風乾する。
13. 1:1000 の混合比で、RNase A (10 mg/mL) を TE バッファーで希釈し、RNase 希釈溶液 (10 ng/μL) を水で調製する。
14. 風乾した核酸ベレットに RNase A 希釈溶液を 50 μL 添加し、ボルテックスにてベレットをしっかりと再懸濁する。
15. 以下の組成で試薬を水で混合し、制限酵素溶液を調製する。ここでは EcoRI を用いているが、使用する制限酵素はベクタープラスミド及び実験の内容に従い、適当なものを選ぶ。
 ・Mill-Q to 7.75 μL
 ・10×H buffer 1 μL (1×)
 ・EcoRI (12 U/μL) 0.25 μL (3 U)
16. RNase A 希釈溶液で再懸濁した核酸溶液 1 μL を調製した制限酵素溶液に添加し、良く混合し、スピンダウンする。
17. RNase A 希釈溶液で再懸濁した核酸溶液とその核酸溶液を加えた制限酵素溶液を 37°C でそれぞれ 60 分間、30 分間、インキュベートし、RNase A に
よる RNA の分解, 及び制限酵素によるプラスミド DNA 配列内の限定分解を行う。

20. 0.5×TBE バッファーを用いて, 1% アガロースゲルを作製する。

21. 制限酵素処理の完了した溶液に核酸溶液に, 2 μL の 6×Gel loading dye を添加し, アガロースゲルの各ウェルにサイズマーカー及び各種サンプルをそれぞれアプライし, 電気泳動を開始する。

22. 電気泳動終了後, アガロースゲルを EtBr で 5~30 分程度染色し, 脱色操作を行い, UV トランスイルミネーターを用いて泳動像を確認し, インサート DNA のサイズ算定及び核酸溶液の濃度算定などを行う。

23. 手順 22 の結果を考慮し, RNase A による RNA の分解処理が完了した核酸溶液に, 20% PEG/2.5 M NaCl 溶液を 30 μL 添加し, 5 分間ボルテックスにて良く混和し, 4°C で 1 時間以上 PEG 沈殿を行う。

24. PEG 沈殿が完了した核酸溶液を 15,000 rpm, 4°C で 30 分間遠心する。

25. ベレットを崩さないように, 上清をしっかりと取り除き, 70% エタノールを適量添加し, 15,000 rpm, 4°C で 5 分間遠心し, ベレットのリンスを行う。

26. ベレットを崩さないように, 上清をしっかりと取り除き, ベレットを 5~15 分程度風乾させる。

27. 精製されたプラスミド DNA ベレットに TE バッファーを 20 μL 添加し, しっかりと再懸濁を行う。

28. 手順 22 の結果を考慮し, 必要に応じてプラスミド DNA 溶液の濃度調製を適宜行い, 使用時まで 4°C で保存する。

4-2-10. サイクルシークエンス法による塩基配列決定

イマーに関しては Genenet 社にその合成を依頼した。

1. シークエンスプライマーを Milli-Q で希釈し、1.6 pmol/µL 濃度のシークエンスプライマー希釈溶液を調製する。Zero Blunt® TOPO® PCR Cloning Kit 及び TOPO® TA Cloning® Kit for Sequencing に付属している M13 Forward (−20), M13 Reverse, T3 Promoter, T7 Promoter シークエンスプライマーはそれぞれ 20.35, 19.25, 16.45, 16.40 pmol/µL で納品されており、Genenet 社に合成を依頼したカスタムシークエンスプライマーは 100 pmol/µL で調製してある。

2. サイクルシークエンス 1 反応あたり必要なテンプレート量はプラスマド DNA の場合 75~150 ng, コスミド DNA の場合 0.25~0.5 µg, PCR 産物の場合 0.5~25 ng であるため、濃度算出及び濃度調製等の作業を事前に必ず行う。なお、高次構造を形成する DNA やコスミド DNA などのサイズの大きいテンプレートは事前に 98°C で 10 分間インキュベートし、氷上で 5 分間の急冷を行い使用する。

 - Milli-Q to 10 µL
 - 5×Sequencing Buffer 2 µL (1×)
 - シークエンスプライマー (1.6 µM) 1 µL (0.16 µM)
 - テンプレート DNA X µL
 - BigDye Terminator v3.1 (Pre-Mix) 0.5 µL

4. 以下のサイクル条件で、サイクルシークエンス反応を行った。なお、反応終了後、直ちに精製作業に進まない場合は、サンプルを回収し、−20°C で遮光保存する。

 Predenature 96°C, 1 分間
 ↓
 Denature 96°C, 10 秒間
Annealing 50°C, 5 秒間 × 25 サイクル
Extension 60°C, 4 分間
↓
Preservation 4°C, ∞

5. 反応終了直前に、清潔な 1.5 mL マイクロチューブに 125 mM EDTA を 2.5 μL 分注しておく。
6. 反応終了後、サンプルを氷上遮光下に回収し、サンプルを 125 mM EDTA が分注されたマイクロチューブに直ちに移し、反応を停止させた。
7. 100% エタノールを 30 μL ずつ添加し、ポルテックスにて良く混合する。
8. 遮光下、室温で 15 分間インキュベートし、エタノール沈殿を行う。
9. エタノール沈殿の待ち時間を利用して、以下の組成に従いキャビラリー電気泳動用 Running Buffer を用時調製する。使用時まで 4°C で保存。
 * Milli-Q 45 mL
 * 10×Running Buffer 5 mL
10. エタノール沈殿の待ち時間を利用して、Applied Biosystems 3130xl Genetic Analyzer システムを起動させる。まず、接続パソコンの電源を入れ、Windows OS にログイン後、完全に立ち上がるまで待つ。パソコンが完全に立ち上がったら、Applied Biosystems 3130xl Genetic Analyzer 本体の電源を入れ、ステータスランプが緑色に点灯し、スタンバイ状態になるまで待つ。
11. エタノール沈殿が完了したら、15,000 rpm、室温で 20 分間遠心を行う。
12. 遠心分離の待ち時間を利用して、Applied Biosystems 3130xl Genetic Analyzer システム起動の準備を引き続き行う。パソコン、Applied Biosystems 3130xl Genetic Analyzer 本体が起動したら、Windows デスクトップの Run 3130xl Data Collection v3.0 ソフトウェアを起動させる。起動完了後、Applied Biosystems 3130xl Genetic Analyzer 本体の TRAY ボタンを押し、オートサンプラーを手前に移動させる。
13. オートサンプラーが完全に停止したら扉を開け、ウォーターリザーバー、陰極バファーーリザーバーを静かに取り出し、内容物を捨て Milli-Q で壁面を良く洗ぎ、ウォーターリザーバーには Milli-Q を、陰極バファーーリザーバーには事前に調製しており Running Buffer を充填する。この時、リザーバー壁面に水滴が付かないように注意する。
14. 阳極バファーーリザーバーも同様に内容物を捨て Milli-Q で壁面を良く洗ぎ，
Running Buffer を充填する。この時、リザーバー壁面に水滴が付かないように注意する。

15. 乾燥した清潔なセプタをしっかりと陰極側の各リザーバーに挿入し、全てのリザーバーを元の位置に戻し (左手前1番陰極バッファーリザーバー左奥2番廃液用ウォーターリザーバー、右手前3番予備ウォーターリザーバー、右奥4番リンス用ウォーターリザーバー)、最後にポリマー残量の確認を行う。ポリマー残量が少ないと和で適宜交換充填を行う。扉を閉める。

16. 遠心分離が完了後、直ちに上清の除去を行う。この際ベレットを崩さないように注意しながら上清を完全に除去する。

17. 70% エタノールを100 μL 添加し、ベレットを崩さないように注意しながら指の腹で優しく数回タッピングし、ベレットの洗浄と未反応 Dye の除去を行う。

18. 15,000 rpm、室温で10分間遠心し、直ちに上清の除去を行う。この際ベレットを崩さないように注意しながら上清を完全に除去する。

19. 遮光下で10~15分程度風乾を行い、事前に溶かしておいた Hi-Di Formamide を20 μL ずつ添加し、ベレットの再懸濁を行う。直ちに DNA シーケンシングに移行しない場合は風乾した状態で4°C もしくは−20°C で遮光保存する。

20. Hi-Di Formamide 添加後、30~90秒ボルテックスを行い、再懸濁を充分に行い、96 穴マルチプレートにサンプルを丁寧にアプライする。空気ウェルには Hi-Di Formamide を20 μL 充填する。最後にウェル内に気泡が発生していないか、壁面に水滴がついていないか充分に確認する。

21. プレートベースにサンプルをアプライした96穴マルチプレートをのせ、その上に乾燥した清潔なセプタストリップ、プレートリテナを順番にのせ、プレートアセンブリをしっかりと組み立てる。

22. TRAY ボタンを押し、オートサンプラーを手前に移動させ、オートサンプラーが完全に停止したら扉を開け、組み立てたプレートアセンブリをオートサンプラーに設置し、扉を閉める。

23. Run 3130xl Data Collection v3.0 ソフトウェアのナビゲーションペインから Plate Manager を選択し、各項目を入力する。

24. 設定が完了すると、Sequencing Analysis Plate Editor が開き、サンプルをアプライしたウェル番号に対応する欄にサンプル名を入力し、データ出力先、
機器プロトコル、解析プロトコルを設定する。
25. 設定が完了すると、Plate Manager にプレートレコードが登録される。
26. Run Scheduler > Plate View > Find All と進み、先程登録したプレートレコードを選択し、リンク先の Plate Position Indicator を選択すると、Plate Position Indicator が黄色から緑色へ変わり、オートサンプラー上のサンプルプレートとのリンクが完了する。
27. リンクが完了すると Run View のツールバー上に Start Run ボタンが表示されるので、このボタンをクリックし、ランを開始する。
28. ラン完了後、TRAY ボタンを押し、オートサンプラーを手前に移動させ、オートサンプラーが完全に停止したら扉を開け、プレートアセンブリをオートサンプラーから取り外し、扉を閉める。
29. プレートアセンブリを解体し、セプタストリップを Milli-Q で良く濯ぐ。
30. Sequencing Analyzer 5.2 ソフトウェアを開き、ログインする。
31. File > Add Samples と進み、自身のサンプルを出力フォルダから選択する。
32. 表示された自身のサンプル選択し、Show > Start ボタンをクリックすると、データの変換及び波形データの出力が行われる。
33. File > Exit と進み、Sequencing Analyzer 5.2 ソフトウェアを終了させる。その際、全てのデータ保存をする。
34. Run 3130xl Data Collection v3.0 ソフトウェアの Service Console > Stop All を選択し、システムが完全に停止するまで待つ。
35. Applied Biosystems 3130xl Genetic Analyzer 本体の電源を落とし、続いてパソコンを終了する。
36. 波形データの解析及び修正は Finch TV ソフトウェア (Geospiza Inc., Seattle, WA, USA) を用いて行った。

4-3. 遺伝子及びタンパク質発現解析
4-3-1. ハブ組織からの RNA 抽出
本項では ISOGEN (Nippon Gene Co., Ltd., Tokyo, Japan) を用いた組織からの RNA の抽出操作について記述する。以降の実験に用いる RNA は第 4 章 1 節 1 項で示したように、ホンハブ（個体番号：No. 7, 8）、ヒメハブ（No. 25）の各臓器から、それぞれ抽出を行った。使用した全ての器具類は可能な限り、
RNase/DNase-Free のディスポーザブルなものを用意し、使い捨てできない器具類に関しては充分に洗浄し、RNase Quiet (Nacalai tesque, Inc., Kyoto, Japan) による RNase 活性阻害処理及びオートクレープ・紫外線照射による滅菌処理を充分に施した。なお、以降実験は全て清潔な手袋・マスク・白衣を着用し行う。

1. RNase-Free 環境を構築するために、RNase Quiet を用いてマイクロビペットマン、チップケース、乳鉢、乳棒、薬さじ、試薬瓶など全ての器具に RNase 不活性化処理を施した。マイクロビペットマンやチップケースなどは分解し、内部洗浄も施した。
2. オートクレープ滅菌可能な器具類はアルミホイルで包装し、オートクレープ処理を施した。RNase はオートクレープでは活性を失わず、オートクレープ釜内に残留する RNase の混入を避けるために、しっかりと包装した。オートクレープ滅菌が不可能な器具類は紫外線照射を行い、滅菌処理を施した。
3. 隅々まで RNase Quiet で RNase 不活性化処理を施し、事前に冷却しておいた清潔な乳鉢・乳棒に液体窒素を注ぎ、乳鉢・乳棒及び薬さじ等の器具を良く冷却する。
4. 事前に RNase/DNase-Free なマイクロチューブに ISOGEN を 1 mL 添加しておく。
5. 液体窒素が充填された乳鉢に適度な大きさに砕かれた組織片 (0.5 立方センチメートル以下) を投入し、液体窒素が完全に蒸発する前に、組織片を乳棒で叩き砕き、ある程度いくつかの小断片にしておく。
6. 液体窒素が完全に蒸発しないうちに、素早く組織片を粉砕する。液体窒素の蒸発は超音波キャビテーションによる核酸の物理的断片化を引き起こすので、液体窒素の補充は避ける。
7. 粉砕した組織を速やかに ISOGEN が充填されたマイクロチューブへ移し、直ちにポルテックスを行い、組織片を ISOGEN に馴染ませ平衡化させる。液体窒素中では内在性 RNase の活性が抑えられるので液体窒素蒸発後は直ちに ISOGEN に組織を移す。
8. 粉砕した組織と ISOGEN を良く混合したら、室温で 5 分間インキュベートする。
9. 12,000×g, 4°C で 10 分間遠心し、組織片や脂質等を取り除く。
10. 組織片や脂質等の夾雑物を吸い上げないように上清を回収し，RNase/DNase-Freeマイクロチューブに移し，そこにクロロホルムを200μL添加し，15秒間ボルテックスを行い，室温で2〜3分間インキュベートする。
11. 12,000×g, 4℃で15分間遠心し，中間層を吸わないように上清を回収し，新しいRNase/DNase-Freeマイクロチューブに移す。
12. 等量のクロロホルムを加え，15秒間ボルテックスを行い，室温で2〜3分間インキュベートする。
13. 12,000×g, 4℃で15分間遠心し，中間層を吸わないように上清を回収し，新しいRNase/DNase-Freeマイクロチューブに移す。
14. DNAやタンパク質などが充分に取り除けていない場合には手順12, 13を繰り返す。
15. 上清を回収し，0.8倍量のイソプロパノールを添加する。
16. 室温で5〜10分間インキュベートする。
17. 12,000×g, 4℃で10分間遠心し，沈殿したRNAペレットを崩さないように上清を取り除き，70%エタノールを1mL加える。
18. 穏やかにボルテックスを行い，7,500×g, 4℃で5分間遠心を行う。
19. 沈殿したRNAペレットを崩さないように上清を全て取り除き，風乾を行う。
20. 風乾完了後，RNase-Freeの水を50μL添加し，RNAペレットを再懸濁する。
21. 60℃で15分間インキュベートし，ペレットを完全に溶解させる。
22. 分光光度計で260, 280, 320nmの吸光度を測定し，TotalRNAの核酸濃度，純度を算出し，−80℃にて保存した。

4-3-2. 1st strand cDNA合成
本項ではSMART™cDNA Library Construction Kit（Clontech Laboratories Inc., Palo Alto, CA, USA）とReverTra Ace®qPCR RT Master Mix with gDNA Remover（TOYOBO Co., Ltd., Osaka, Japan）を用いた1ststrandcDNAの合成法に関してそれぞれ前後半に分け記述する。SMART™cDNA Library Construction Kitは操作がやや煩雑であるが，完全長cDNAを得ることが可能であり，cDNAライブラリーの構築，5’ RACE, 3’ RACEなどが行える。一方，ReverTra Ace®qPCR RT Master Mix with gDNA Removerはわずか数十分でcDNAの合成が可能であり，加えてゲノムDNAの除去を行うため，逆転写PCRを用いた発現解析に有用である。本項の操作で使用した全ての器具類は可能な限り，RNase/DNase-Freeのディス
ポーザブルなものを使い捨てできない器具類に関しては充分に洗浄し、RNase Quiet (Nacalai tesque, Inc., Kyoto, Japan) による RNase 活性阻害処理及びオートクレープ・紫外線照射による滅菌処理を充分に施した。なお、以降実験は全て清潔な手袋・マスク・白衣を着用し行う。

■ SMART™ cDNA Library Construction Kit を用いた cDNA 合成法

1. 以前に分光光度計を用いて求めた Total RNA 濃度をもとに、各組織の Total RNA を 1 μg とり、RNase/DNase-Free の 0.2 mL マイクロチューブに、以下の成で試薬を氷上で混合しておく。
 - RNase-Free Water to 5 μL
 - Total RNA X μL (0.2 μg/μL)
 - SMART IV Oligonucleotide (12 μM) 1 μL (2.4 μM)
 - CDS III/3' PCR Primer (12 μM) 1 μL (2.4 μM)

2. 手順 1 で調製した試薬を 72°C に温めておいたサマルサイクローにセットし、72°C で 2 分間インキュベートし、RNA を熱変性させる。
3. 氷に食塩を適量加えた寒材を用意し、直ちに熱変性が完了した RNA 溶液を急冷する。そのまま氷上で 2 分間インキュベート。
4. 軽くスピンドウを挍、チューブ底に内容物を集める。
5. 熱変性 RNA 溶液に、以下の成で試薬を氷上で添加していく。
 - 5×First-Strand Buffer 2 μL (1×)
 - 20 mM DTT 1 μL (2 mM)
 - 10 mM dNTP Mix 1 μL (1 mM)
 - SMARTScribe™ MMLV Reverse Transcriptase (100 U/μL) 1 μL (100 U)

6. 調製した試薬をビペットインにて、穏やかに混ぜ、軽くスピンドウを行う。
7. サマルサイクローを用いて 42°C で 1 時間インキュベートし、逆転写反応終了後は氷上へ。ここで全ての作業を停止し、1st strand cDNA を保存する場合、25 mM NaOH を 1 μL 添加し、68°C で 30 分間インキュベートし、酵素反応を停止させ、−30°C で保存する。今回は後述する RACE 解析に向けて、合成した 1st strand cDNA を Long Distance PCR (LD-PCR) で増幅する。
8. 0.2 mL マイクロチューブに、以下の成で試薬を氷上で混合していく。
・Milli-Q to 100 µL
・1st strand cDNA 2 µL
・10×Advantage 2 PCR Buffer 10 µL (1×)
・50×dNTP Mix 2 µL (1×)
・5’ PCR Primer (10 µM) 2 µL (0.2 µM)
・CDS III/3’ PCR Primer (10 µM) 2 µL (0.2 µM)
・50×Advantage 2 Polymerase Mix 2 µL (1×)

9. 穏やかに混合し、スピナウンを行い、軽くスピナウンを行い、チューブ底に内容物を集める。
10. 以下のサイクル条件で、1st strand cDNA の増幅を行った。

 Predenature 95°C, 20 秒間

 ↓

 Denature 95°C, 5 秒間 × 20 サイクル

 Annealing, Extension 68°C, 6 分間

 ↓

 Preservation 4°C, ∞

11. 増幅された 1st strand cDNA は使用時まで−30°C で保存する。

■ ReverTra Ace® qPCR RT Master Mix with gDNA Remover を用いた cDNA 合成法
1. 以前に分光光度計を用いて求めた Total RNA 濃度をもとに、各組織の Total RNA を 0.1 µg/µL 濃度に調製した Total RNA 稀釀溶液 10 µL を RNase /DNase-Free の 0.2 mL マイクロチューブに調製しておく。なお、稀釀には RNase-Free の水を用いる。
2. 0.1 µg/µL 濃度に調製した Total RNA 稀釀溶液 10 µL を 65°C に温めておいたサーマルサイクラーにセットし、65°C で 5 分間インキュベートし、RNA を熱変性させる。
3. 氷に食塩を適量加えた寒材を用意し、直ちに熱変性が完了した RNA 溶液を急冷する。そのまま氷上で 5 分間インキュベート。
4. 事前に、以下の組成で試薬を氷上で混合しておく。この作業は試薬開封時の初回のみで良い。

 ・4×DN Master Mix 220 µL
 ・gDNA Remover 4.4 µL
5. 手順 3, 4 で調製した溶液を用いて、以下の組成で試薬を氷上で混合する。
 - 4×DN Master Mix (+ gDNA Remover) 2 µL (1×)
 - RNA 溶液 (0.1 µg/µL) 5 µL (0.5 µg)
 - RNase-Free Water 1 µL
6. 37°C で 5 分間インキュベートし、ゲノム DNA の除去を行う。
7. ゲノム DNA の除去が完了した RNA 溶液に 5×RT Master Mix II を 2 µL 氷上で添加し、混合する。
8. サーマルサイクラーを用いて、以下の条件で逆転写反応を行った。
 - Reverse transcription 37°C, 15 分間
 - Reverse transcription 50°C, 5 分間
 - Heat inactivation 98°C, 5 分間
 - Preservation 4°C, ∞
9. 合成された 1st strand cDNA は−30°C で使用時まで保存する。

4-3-3. 逆転写 PCR

本項では逆転写 PCR の実験操作に関して記述する。本項で用いるテンプレート DNA は第 4 章 3 節 2 項で SMART™ cDNA Library Construction Kit と ReverTra Ace® qPCR RT Master Mix with gDNA Remover を用いて合成された cDNA を用いている。目的遺伝子のクローニングには SMART™ cDNA Library Construction Kit を、発現量比較では ReverTra Ace® qPCR RT Master Mix with gDNA Remover 由来の cDNA をそれぞれ使用した。また、発現量比較の内部標準遺伝子としては β アクチンをコードする ACTB 遺伝子を用いている。

1. 合成された 1st strand cDNA を用意し、0.2 mL マイクロチューブに、以下の組成で試薬を氷上で混合していく。また、標的遺伝子を増幅するプライマーセットとは別に ACTB 遺伝子を特異的に増幅させる SHU7 と SHU8 プライマーセットによる PCR も同時に行った。なお、全ての試薬調製はサンプル間での量的誤差が生じないように、可能な限り 1 つの系にまとめ、それをそれぞれのマイクロチューブに分注するように行った。
 - Milli-Q to 50 µL
 - 5×PCR Buffer for KOD –Plus– 5 µL (1×)
 - 2 mM dNTPs 5 µL (0.2 mM)
 - 25 mM MgSO₄ 3 µL (1.5 mM)
センスプライマー (25 μM) 0.6 μL (0.3 μM)
アンチセンスプライマー (25 μM) 0.6 μL (0.3 μM)
1st strand cDNA 0.5~1.0 μL
KOD–Plus– DNA Polymerase (1 U/μL) 1 μL (1 U)

Total 50 μL

2. 以下のサイクル条件下で逆転写 PCR を行う。Annealing 温度はプライマーセットの Tm 値を参考に±3°C を目安にその都度変更し行った。なお、サイクル数は 10~45 サイクルの範囲では 5 サイクル刻みで、一度反応を停止し、その都度 5 μL ずつ分取し、サイクル毎の増幅をモニタリングした。

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predenature</td>
<td>94°C</td>
<td>2 分間</td>
</tr>
<tr>
<td>Denature</td>
<td>98°C</td>
<td>10 秒間</td>
</tr>
<tr>
<td>Annealing</td>
<td>X°C</td>
<td>30 秒間</td>
</tr>
<tr>
<td>Extension</td>
<td>68°C</td>
<td>1 分/kbp</td>
</tr>
<tr>
<td>Preservation</td>
<td>4°C</td>
<td>∞</td>
</tr>
</tbody>
</table>

3. 電気泳動を行い、増幅バンドの有無を確認し、どの組織で発現しているかまた、どの程度のサイクル数でバンドが確認できるかなども確認する。

4. 数回、同様の操作を行い、手順 3 で記述した項目を充分に確認し、実験の再現性などもチェックする。

5. 事前に行った PCR の結果をもとに、バンドが確認できるサイクル数を予測し、また各サンプルの ACTB 遺伝子増幅バンドの蛻光強度を Image J を用いて算出し、ACTB 遺伝子増幅バンドの蛻光強度に基づいてサンプル間で異なる 1st strand cDNA の初期濃度がある程度合わせておく。なお、伸長時間の最適化も行う。

6. 条件検討を行い、事前に検討したサイクル数などの条件に基づいて再度逆転写 PCR を実施する。

7. 電気泳動を行い、EtBr で充分に染色し、しっかりと脱色操作を行い、UV トランスイルミネーターで泳動写真を撮影し、Image J で増幅バンドの蛻光強度を算出する。

8. ACTB 遺伝子増幅バンドの蛻光強度に基づいた定量値を算定し、目的遺伝子の蛻光強度を定量値補正した後、各サンプル間での発現量を相対的に比較する。
する。

4-3-4. 5′/3′ Rapid amplification of cDNA end (RACE)

本項では 5′/3′ RACE による転写開始点及び転写終結点の同定操作に関して記述する。なお、本項で用いるテンプレート DNA は第 4 章 3 節 2 項で SMART™ cDNA Library Construction Kit を用いて合成・増幅された cDNA を用いている。

1. 5′ RACE は第 4 章 3 節 2 項で cDNA の合成に用いた SMART IV Oligo -nucleotide に相補的な配列をもつ Universal Primer A Mix Long (5′- CTA ATA CgA CTC ACT ATA ggg CAA gCA gTg gTA TCA ACg CAg AgT -3′) と標的遺伝子の内部配列に特異的なプライマーを設計し、以下の組成で試薬を水上で混合する。

\[
\begin{align*}
\text{・Milli-Q} & \quad \text{to 50 µL} \\
\text{・5×PCR Buffer for KOD –Plus–} & \quad 5 \mu L \quad (1×) \\
\text{・2 mM dNTPs} & \quad 5 \mu L \quad (0.2 \text{ mM}) \\
\text{・25 mM MgSO}_4 & \quad 3 \mu L \quad (1.5 \text{ mM}) \\
\text{・Universal Primer A Mix Long (25 µM)} & \quad 0.6 \mu L \quad (0.3 \text{ µM}) \\
\text{・カスタムプライマー (25 µM)} & \quad 0.6 \mu L \quad (0.3 \text{ µM}) \\
\text{・1st strand cDNA 増幅産物} & \quad 0.5~2.0 \mu L \\
\text{・KOD –Plus– DNA Polymerase (1 U/µL)} & \quad 1 \mu L \quad (1 \text{ U}) \\
\end{align*}
\]

Total 50 µL

2. 以下のサイクル条件で 5′ RACE 1st PCR を行う。

\[
\begin{align*}
\text{Predenature} & \quad 94°C, \ 2 \text{ 分間} \\
\downarrow \\
\text{Denature} & \quad 98°C, \ 10 \text{ 秒間} \quad \times 25 \text{ サイクル} \\
\text{Annealing, Extension} & \quad 68°C, \ 1 \text{ 分/kbp} \\
\downarrow \\
\text{Preservation} & \quad 4°C, \ \infty \\
\end{align*}
\]

3. 電気泳動を行い、増幅バンドの有無を確認する。もし増幅バンドが単一でなく不鮮明な場合は 2nd PCR (Nested PCR) を実施する。

4. 5′ RACE の 2nd PCR (Nested PCR) は Universal Primer A Mix Long 配列内部に相補的な Nested Universal Primer A (5′–AAg CAg Tgg TAT CAA CgC AgA
gT–3') と 1st PCR で使用したカスタムプライマーよりもさらに内側の内部配列に特異的なプライマーを設計し、以下の組成で試薬を水中で混合する。

- Milli-Q ト50 µL
- 5×PCR Buffer for KOD –Plus– 5 µL (1×)
- 2 mM dNTPs 5 µL (0.2 mM)
- 25 mM MgSO4 3 µL (1.5 mM)
- Nested Universal Primer A (25 µM) 0.6 µL (0.3 µM)
- カスタムプライマー (25 µM) 0.6 µL (0.3 µM)
- 1st PCR 増幅産物 0.1~1.0 µL
- KOD –Plus– DNA Polymerase (1 U/µL) 1 µL (1 U)

Total 50 µL

5. 以下のサイクル条件で 5’ RACE 2nd PCR を行う。

<table>
<thead>
<tr>
<th>ステップ</th>
<th>時間/温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predenature</td>
<td>94°C, 2 分間</td>
</tr>
<tr>
<td>Denature</td>
<td>98°C, 10 秒間</td>
</tr>
<tr>
<td>Annealing, Extension</td>
<td>68°C, 1 分/kbp</td>
</tr>
<tr>
<td>Preservation</td>
<td>4°C, ∞</td>
</tr>
</tbody>
</table>

6. 電気泳動を行い、増幅バンドの有無を確認する。検出バンドが複数であればアガロースゲルからの切り出し精製を行い、TOPO クローニングを行い、以降、サイクルシークエンス法による DNA シークエンシングを実施し、転写開始点を予測する。

7. 3’ RACE は第4章3節2項でcDNA の合成に用いた CDS III/3’ PCR Primer (もしくは Poly-T) と標的遺伝子の内部配列に特異的なプライマーを設計し、以下の組成で試薬を水中で混合する。

- Milli-Q ト50 µL
- 5×PCR Buffer for KOD –Plus– 5 µL (1×)
- 2 mM dNTPs 5 µL (0.2 mM)
- 25 mM MgSO4 3 µL (1.5 mM)
- CDS III/3’ PCR Primer (25 µM) 0.6 µL (0.3 µM)
- カスタムプライマー (25 µM) 0.6 µL (0.3 µM)
- 1st strand cDNA 増幅産物 0.5~2.0 µL
8. 以下のサイクル条件で 3’ RACE 1st PCR を行う。

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predenature</td>
<td>94°C</td>
<td>2 分間</td>
</tr>
<tr>
<td>Denature</td>
<td>98°C</td>
<td>10 秒間</td>
</tr>
<tr>
<td>Annealing, Extension</td>
<td>68°C</td>
<td>1 分/kbp</td>
</tr>
</tbody>
</table>

× 25 サイクル

9. 電気泳動を行い、増幅バンドの有無を確認する。もし増幅バンドが単一で
 不鮮明な場合は 2nd PCR (Nested PCR) を実施する。

10. 3’ RACE の 2nd PCR (Nested PCR) は CDS III/3’ PCR Primer 配列内部に相補
 的な Poly-T と 1st PCR で使用したカスタムプライマーよりもさらに内側の
 内部配列に特異的なプライマーを設計し、以下の組成で試薬を氷上で混合
 する。

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>to 50μL</td>
<td></td>
</tr>
<tr>
<td>5×PCR Buffer for KOD –Plus–</td>
<td>5μL</td>
<td>(1×)</td>
</tr>
<tr>
<td>2 mM dNTPs</td>
<td>5μL</td>
<td>(0.2 mM)</td>
</tr>
<tr>
<td>25 mM MgSO₄</td>
<td>3μL</td>
<td>(1.5 mM)</td>
</tr>
<tr>
<td>Poly-T (25 μM)</td>
<td>0.6μL</td>
<td>(0.3 μM)</td>
</tr>
<tr>
<td>カスタムプライマー (25 μM)</td>
<td>0.6μL</td>
<td>(0.3 μM)</td>
</tr>
<tr>
<td>1st PCR 増幅産物</td>
<td>0.1-1.0μL</td>
<td></td>
</tr>
<tr>
<td>KOD –Plus– DNA Polymerase (1 U/μL)</td>
<td>1μL</td>
<td>(1 U)</td>
</tr>
</tbody>
</table>

Total 50μL

11. 以下のサイクル条件で 3’ RACE 2nd PCR を行う。

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predenature</td>
<td>94°C</td>
<td>2 分間</td>
</tr>
<tr>
<td>Denature</td>
<td>98°C</td>
<td>10 秒間</td>
</tr>
<tr>
<td>Annealing, Extension</td>
<td>68°C</td>
<td>1 分/kbp</td>
</tr>
</tbody>
</table>

× 15-20 サイクル

12. 電気泳動を行い、増幅バンドの有無を確認する。検出バンドが複数であれ
4-3-5. アフィニティークロマトグラフィー

本項では抗血清からの IgG 抗体精製及び，精製 IgG 抗体を用いたアフィニティークロマトグラフィーの実験操作に関して記述する。以降操作は全て低温室もしくは氷上で行った。また，本実験で用いたポリクロナール抗体を含む抗血清の作製は Operon biotechnologies 社（Operon biotechnologies, a Eurofins genomics company, Tokyo, Japan）に委託し，手順 1 に示す方法で作製された。

| 飽和硫安溶液 |
|------------------|---|
| Ammonium sulfate | 50 g |
| ↓ Milli-Q を 50 mL 添加 | Total 50~ mL |
| ↓ 45~50°C でインキュベートし Ammonium sulfate を溶解させる。 |
| ↓ 室温で数日放置し，保存する。 |

| 0.1 M グリシン-HCl バッファー (pH 2.8) |
|------------------|---|
| Glycine | 1.5 g (0.1 M) |
| ↓ pH メーターで pH 2.8 に調整 |
| ↓ Milli-Q で 200 mL にメスアップ | Total 200 mL |
| ↓ 4°C で保存。 |

| 0.2 M トリエタノールアミン溶液 (pH 8.0) |
|------------------|---|
| Triethanolamine (7.53 M) | 1,328 µL (0.2 M) |
| ↓ pH メーターで pH 8.0 に調整 |
| ↓ Milli-Q で 50 mL にメスアップ | Total 50 mL |
| ↓ 4°C で保存。 |

| 20 mM DMP 溶液 |
|------------------|---|
| Dimethyl pimelimidate dihydrochloride (DMP) 51.8 mg (20 mM) |
| ↓ 0.2 M トリエタノールアミン-HCl (pH 8.3) 10 mL で溶解 |

ばアガロースゲルからの切り出し精製を行い，TOPO クローニングを行い，以降，サイクルシークエンス法による DNA シークエンシングを実施し，転写終結点を予測する。
↓4°Cで保存。

<table>
<thead>
<tr>
<th>30% (w/v) Brij-35溶液 (用時調製)</th>
<th>Polyoxyethylene (23) lauryl ether (Brij-35) 0.3 g (30%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓Milli-Qで1mLにメスアップ</td>
<td>Total 1 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TBC/0.5 M NaClパッファー (用時調製)</th>
<th>1 M Tris-HCl (pH 7.5) 10 mL (20 mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% Brij-35溶液</td>
<td>83 μL (0.005%)</td>
</tr>
<tr>
<td>CHAPS</td>
<td>0.5 μg (0.1%)</td>
</tr>
<tr>
<td>NaCl</td>
<td>14.61 g (0.5 M)</td>
</tr>
<tr>
<td>↓Milli-Qで500mLにメスアップ</td>
<td>Total 500 mL</td>
</tr>
</tbody>
</table>

1. ホンハブのIIE型PLA2のC末端領域125-134領域(CPRWAPTKGG)のペプチドを合成し、その合成ペプチドにKeyhole limpet hemocyanin(KLH)をコンジュガートした抗原をウサギに皮内に投与し、計4回免疫感作へ経てポリクロナル抗体を含む抗血清を得た。
2. 10mLのウサギ抗血清に、0.2 Mリン酸ナトリウムパッファー(pH 7.0)を1mL加え、ゆっくりと攪拌しながら11mLの飽和硫酸を少しずつ添加し、粗分画を行う(終濃度50%飽和)。
3. 4°Cで1時間ゆっくりと攪拌を続ける。
4. 10,000×g, 4°Cで20分間遠心し、沈殿を回収する。なおこの時、表層のリボタンパク質が残らないように事前に充分除去しておいた。
5. 回収した沈殿に50%飽和硫酸を少量加え、沈殿を砕く。
6. 15,000×g, 4°Cで10分間遠心し、沈殿を回収する。
7. 10mLの20 mMリン酸ナトリウムパッファー(pH 7.0)で沈殿を再懸濁する。
8. 蒸留水を適量、清潔なガラス容器に入れ、その中に透析チューブ膜を適宜必要量入れ、オートクレープにて煮沸し、透析チューブ膜の前処理を行う。
9. 前処理が完了した透析チューブ膜に再懸濁した血清粗分画液を加え、内溶液が漏れないようにしっかりと透析チューブ膜を開じ、20 mMリン酸ナトリウムパッファー(pH 7.0)を外液として、脱塩処理及びパッファー置換を充分に行った。外液量、外液交換回数、時間などは適宜必要に応じて決め
10. 脱塩処理及びバッファー置換を充分行った血清粗分画液を 0.45 µm フィルターで濾過する。
11. HiTrap Protein G HP カラム (GE Healthcare UK Ltd., little chalfont, UK) に気泡を入れないように注意しながら、5 mL の Milli-Q を充填したシリジンをカラム上部に接続する。
12. カラム下部のボトムキャップを外し、1 秒間に 1 滴のペースで送液し、カラム内部の洗浄を行う。
13. 5 mL の 20 mM リン酸ナトリウムバッファー (pH 7.0) を充填したシリジンをカラム上部に接続し、先程と同様に送液を行い、カラムの平衡化を行う。
14. フィルター濾過した血清粗分画液の半分量 (5 mL) をシリジンに充填し、1分間に 0.2~1 mL のペースで送液する。
15. 15 mL の 20 mM リン酸ナトリウムバッファー (pH 7.0) を 1 秒間に 1 滴のペースで送液し、非吸着成分の押出洗浄を行う。
16. 清潔なマイクロチューブを 20 本程度用意し、それぞれに 1 M Tris-HCl (pH 9.0) を 50 µL ずつ添加しておく。
17. 0.1 M グリシン-HCl バッファー (pH 2.8) 10 mL を 1 秒間に 1 滴のペースで送液し、溶出液を手順 16 で準備したマイクロチューブに 0.5 mL ずつ回収していく。
18. 5 mL の 20 mM リン酸ナトリウムバッファーでカラムの洗浄と再平衡化を行う。長期間使用しない場合は 20% エタノールを充填し保存する。
19. 精製抗体フラクションは SDS-PAGE にて確認を行い、溶出画分を保存する。
20. 精製抗体はウェスタンブロット解析などの他の実験操作で使用するので、終濃度が 50%となるように滅菌したグリセロールを精製抗体に加え、使用量に応じて小分け分注し、-20℃ で保存する。
21. カラムに抗体を結合させ、アフィニティーカラムを作製する。手順 18 で充分に洗浄・再平衡化したカラムに手順 14 で使用しなかった残りの血清粗分画液を手順 14 同様に送液する。
22. 手順 15 同様に非吸着成分の押出洗浄を行う。
23. 20 mM DMP 溶液を 5 mL 用意し、1 分間に 0.2~1 mL のペースで送液する。
24. カラム下部のボトムキャップを閉め、20 mM DMP 溶液をカラム内部に充填し、充分に DMP 溶液で満たされると、カラム上部のフタを閉め、室温で 1
時間ゆっくりと震盪し、IgG と Protein G のクロスリンク反応を行う。
25. クロスリンク反応終了後、0.2 M エタノールアミン-HCl 溶液 (pH 8.0) を 15 mL カラムに送液する。
26. カラム下部のボトムキャップを閉め、0.2 M エタノールアミン-HCl 溶液 (pH 8.0) をカラム内部に充填し、充分に 0.2 M エタノールアミン-HCl 溶液で満たされたら、カラム上部のフタを閉め、室温で 2 時間ゆっくりと震盪し、プロッキング反応を行う。
27. 25 mL の 0.1 M グリシン-HCl バッファー (pH 2.8) 20 mL を送液し、未架橋抗体分子を洗い出す。
28. 25 mL の 50 mM Tris-HCl バッファー (pH 7.5) でカラムの洗浄を行う。アフィニティーカラムは以上で完成である。もしカラムを保存する場合は 50 mM Tris-HCl バッファーにアジ化ナトリウムを 0.02% (w/v) 濃度となるように加えた溶液をカラムに送液し、4℃ で保存する。
29. サンプルをアフィニティーカラムにロードし、目的タンパク質の抽出作業を行う。サンプルを調製し、TBC/0.5 M NaCl バッファーへ溶解させる。今回はホンハブ粗毒 0.2 g を TBC/0.5 M NaCl バッファーに溶解させた。
30. 10 mL の TBC/0.5 M NaCl バッファーでカラムの平衡化を行う。
31. サンプル溶液を 1 秒間に 0.5 滴のペースで送液する。
32. 25 mL の TBC/0.5 M NaCl バッファーを 1 秒間に 1 滴のペースで送液し、非吸着成分の押出洗浄を行う。
33. 15 mL の Milli-Q を 1 秒間に 1 滴のペースで送液し、脱塩を行う。
34. 清潔なマイクロチューブを 5 本程度用意し、それぞれに 1 M Tris-HCl バッファー (pH 8.0) 60 μL ずつ分注しておく。
35. 10 mL の 0.1 M グリシン-HCl バッファー (pH 2.8) もしくは 0.05% (v/v) トリフルオロ酢酸溶液を 1 秒間に 1 滴のペースで送液し、溶出液を手順 34 で準備したマイクロチューブに 2 mL ずつ回収していく。溶出分画を凍結乾燥する際には 0.05% トリフルオロ酢酸溶液で溶出する。
36. 25 mL の TBC/0.5 M NaCl バッファーでカラムを洗浄する。カラムを保存する場合は TBC/0.5 M NaCl バッファーにアジ化ナトリウムを 0.02% (w/v) 濃度となるように加えた溶液をカラムに送液し、4℃ で保存する。
37. 溶出分画の各フラクションの 280 nm 吸光度を測定し、加えて SDS-PAGE による確認を行う。
4-3-6. 大腸菌組換えタンパク質発現

本項では大腸菌による組換えタンパク質の発現に関して記述する。なお、今回はホンハブ IIE 型 PLA₂を pET-20b ベクター (Novagen Inc., a EMD Millipore company, Madison, WI, USA) に組み込み、Rosetta-gami™ B (DE3) pLysS 及び BL21 大腸菌 (Novagen Inc., a EMD Millipore company, Madison, WI, USA) で発現させる。なお、大腸菌を扱う全ての工程は無菌操作で行う。

* 50 mM CaCl₂/20% (w/v) グリセロール

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>pH</th>
<th>溶媒</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M CaCl₂</td>
<td>500 µL</td>
<td>(50 mM)</td>
<td>Milli-Q で 10 mL にメスアップ</td>
</tr>
<tr>
<td>50% (w/v) グリセロール</td>
<td>4 mL</td>
<td>(20%)</td>
<td>Total 10 mL</td>
</tr>
</tbody>
</table>

* 剧体破砕バッファー

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>pH</th>
<th>溶媒</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M Tris-HCl (pH 8.0)</td>
<td>200 µL</td>
<td>(20 mM)</td>
<td>Milli-Q で 10 mL にメスアップ</td>
</tr>
<tr>
<td>5 M NaCl</td>
<td>100 µL</td>
<td>(50 mM)</td>
<td>Total 10 mL</td>
</tr>
</tbody>
</table>

* 細胞溶解バッファー (用時調製)

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>pH</th>
<th>溶媒</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M Tris-HCl (pH 7.5)</td>
<td>1 mL</td>
<td>(20 mM)</td>
<td>Milli-Q で 50 mL にメスアップ</td>
</tr>
<tr>
<td>5 M NaCl</td>
<td>2 mL</td>
<td>(200 mM)</td>
<td></td>
</tr>
<tr>
<td>0.5 M EDTA</td>
<td>50 µL</td>
<td>(0.5 mM)</td>
<td></td>
</tr>
<tr>
<td>1 M Dithiothreitol (DTT)</td>
<td>500 µL</td>
<td>(10 mM)</td>
<td></td>
</tr>
</tbody>
</table>

* 変性バッファー

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>溶媒</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M Tris-HCl (pH 7.5)</td>
<td>1 mL</td>
<td>(20 mM)</td>
</tr>
<tr>
<td>5 M NaCl</td>
<td>2 mL</td>
<td>(200 mM)</td>
</tr>
<tr>
<td>Urea</td>
<td>24.04 g</td>
<td>(8 M)</td>
</tr>
</tbody>
</table>

* 4 M, 3 M Urea 透析バッファー

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
<th>pH</th>
<th>溶媒</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M Tris-HCl (pH 7.5)</td>
<td>1 mL</td>
<td>(20 mM)</td>
<td>Milli-Q で 50 mL にメスアップ</td>
</tr>
<tr>
<td>5 M NaCl</td>
<td>2 mL</td>
<td>(200 mM)</td>
<td>Total 50 mL</td>
</tr>
</tbody>
</table>
Urea 12.0g, 9.0g (4 M, 3 M)
1 M CaCl2 500 µL (10 mM)
L-Cysteine 48 mg (8 mM)
L-Cystine 12 mg (1 mM)

Milli-Qで50 mLにメスアップ Total 50 mL

*2 M, 1 M, 0.5 M Urea透析バッファー
1 M Tris-HCl (pH 7.5) 1 mL (20 mM)
5 M NaCl 2 mL (200 mM)
Urea 6.0 g, 3.0 g, 1.5 g (2 M, 1 M, 0.5 M)
1 M CaCl2 500 µL (10 mM)
L-Arginine hydrochloride 4.21 g (0.4 M)
L-Cysteine 48 mg (8 mM)
L-Cystine 12 mg (1 mM)

Milli-Qで50 mLにメスアップ Total 50 mL

*0 M Urea透析バッファー
1 M Tris-HCl (pH 7.5) 1 mL (20 mM)
5 M NaCl 2 mL (200 mM)
1 M CaCl2 500 µL (10 mM)
L-Cysteine 48 mg (8 mM)
L-Cystine 12 mg (1 mM)

Milli-Qで50 mLにメスアップ Total 50 mL

1. はじめに発現ベクタープラスミドにライゲーションする遺伝子断片の獲得を行う。薬理学を充分に考慮し、5'側にNde IとXho I制限酵素認識配列をそれぞれ組み込んだセンスプライマー（IIExp-1）とアンチセンスプライマー（IIExp-2）を設計し、以下の組成で試薬を氷上で混合する。なお、C末端にHis-tagを付加するので本来の終止コードを取り除き、直後にXho I制限酵素認識配列を設定した。

 - Milli-Q to 50 µL
 - 5×PCR Buffer for KOD +Plus+ 5 µL (1×)
・2 mM dNTPs 5 µL (0.2 mM)
・25 mM MgSO₄ 3 µL (1.5 mM)
・IIIE exp-1 プライマー (25 µM) 0.6 µL (0.3 µM)
・IIIE exp-2 プライマー (25 µM) 0.6 µL (0.3 µM)
・1st strand cDNA 増幅産物 0.5~2.0 µL
・KOD –Plus– DNA Polymerase (1 U/µL) 1 µL (1 U)
Total 50 µL

2. 以下のサイクル条件で PCR を行う。

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-denature</td>
<td>94°C</td>
<td>2 分</td>
</tr>
<tr>
<td>Denature</td>
<td>98°C</td>
<td>10 秒</td>
</tr>
<tr>
<td>Annealing</td>
<td>60°C</td>
<td>30 秒</td>
</tr>
<tr>
<td>Extension</td>
<td>68°C</td>
<td>1 分</td>
</tr>
<tr>
<td>Preservation</td>
<td>4°C</td>
<td>∞</td>
</tr>
</tbody>
</table>

3. アガロースゲル電気泳動を行い、増幅を確認し、濃度算出を行う。充分な増幅が確認できたたら、以下の組成で試薬を水上で混合する。

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR 産物</td>
<td>全量</td>
</tr>
<tr>
<td>10×H buffer</td>
<td>6 µL</td>
</tr>
<tr>
<td>Nde I (8 U/µL)</td>
<td>1 µL (8 U)</td>
</tr>
<tr>
<td>Xho I (8 U/µL)</td>
<td>1 µL (8 U)</td>
</tr>
</tbody>
</table>

Milli-Q で 60 µL にメスアップ Total 60 µL

4. 37°C で 1~2 時間インキュベートし、PCR 増幅断片の付着末端化を行った。

5. 1.5% アガロースゲルで全量を泳動し、染色後アガロースゲルから目的の核酸を含むバンドの切り出し及び精製を行う。

6. 風乾後、6 µL の Milli-Q に再懸濁し、うち 1 µL をアガロースゲル電気泳動に使用し、核酸の濃度算出を行う。使用時まで 4°C で保存する。

7. 続いて、目的遺伝子を組み込む発現ベクタープラスミドの増幅とその精製を行う。閉環状の pET-20b (Novagen Inc., a EMD Millipore company, Madison, WI, USA) を DH5α に形質転換し、アンピシン添加 LB 培地で 37°C で 8~12 時間培養し、コロニーを形成させる。

8. 形成されたコロニーから 1 つをピックアップし, 50 mL のアンピシン添加
LB 液体培地へ播種し、37°C で 8~12 時間振盪培養する。pET 系プラスミドは低コピープラスミドであり、pUC 系プラスミドの 4~10 倍の大腸菌が必要なため、今回は 50 mL で培養する。

9. 50 mL 大腸菌培養液からプラスミド DNA の抽出及び精製を行う。今回はアルカリ SDS 法により抽出を行った。

10. アガロースゲル電気泳動を行い、目的プラスミド DNA が精製できたことを確認し、濃度算出を行う。その後、以下の組成で試薬を水上で混合する。
- 精製済み pET-20b 1 µg
- 10×H buffer 6 µL
- Nde I (8 U/µL) 1.5 µL (12 U)
- Xho I (8 U/µL) 1.5 µL (12 U)

Milli-Q で 30 µL にメスアップ Total 30 µL

11. 37°C で 1~2 時間インキュベートし、ベクターを完全消化する。

12. 制限酵素処理が完了したら、CIP (Alkaline Phosphatase, recombinant (Calf intestine) (Nippon Gene Co., Ltd., Tokyo, Japan)) を 1 µL 添加し、37°C で 15 分間インキュベートし、ベクターの脱リン酸化を行う。

13. 0.5~1% アガロースゲルで電気泳動を行い、pET-20b ベクターに相当するバンドをアガロースゲルから切り出し、精製を行う。

14. 風乾後、6 µL の Milli-Q で再懸濁し、濃度を算出する。

15. 脱リン酸化 pET-20b ベクター溶液を 50 ng/µL に調製し、-20°C で保存する。

16. 手順 6 と 15 で得た PCR 増幅産物と脱リン酸化 pET-20b ベクターをモル比が 3~10：1 となるように調製し、氷上で混合する。

17. 氷上で Ligation High を等量加え、16°C で 0.5~12 時間インキュベートし、ライゲーション反応を行う。完了後は 4°C で保存。

18. DH5α へ形質転換し、培養後、プラスミド抽出を行い、DNA シーケンシングにて、インサートした DNA に変異が無いか、インサートの向きやフレームシフトなどが生じていないか充分に確認する。

19. 続いて、組換えタンパク質を発現させる、Rosetta-gami™ B (DE3) pLysS 及び BL21 大腸菌のコンピレントセルを CaCl2 法により作製する。各大腸菌フリーズストックを起こし、適当な抗生物質を含む LB 寒天培地で 37°C で 8~12 時間、画線培養を行い、コロニーを形成させる。

20. 5 mL の LB 液体培地に各大腸菌に対応する各種抗生物質を添加し、LB 寒天
培地からピックアップしたシングルコロニーを LB 液体培地に播種し、37℃で 8~12 時間、振盪培養を行う。

21. 100 mL の LB 液体培地が入った 500 mL 容器の三角フラスコに適当な抗生物質を必要濃度添加し、事前に LB 液体培地で振盪していた大腸菌培養液を 1 mL 分取し、100 mL の LB 液体培地へと播種する。

22. 37℃で振盪培養し、OD600 値が 0.5 に至るまで培養を続ける。

23. OD600 値が 0.5 に達したら、培養液を 50 mL コニカルチューブに移し、直ちに氷上で 30 分間冷却を行う。

24. 3,000 rpm、4℃で 5 分間遠心し、集菌を行う。

25. 上清を全て捨て、菌体ベレットが沈殿したコニカルチューブをキムタオルの上に逆さまにして 1 分間程度置き、上清を残らず取り除いた。

26. 菌体ベレットに氷冷 50 mM CaCl2 を 25 mL 添加し、氷上で温やかに良く懸濁した。ベレットが充分に懸濁できない場合は先を切り落とした 1 mL のベレットチップでピペットングによる懸濁操作を行う。

27. 大腸菌懸濁液を氷上で 1 時間インキュベートし、インキュベート完了後に 3,000 rpm、4℃で 5 分間遠心する。

28. 上清を素早く取り除き、氷冷 50 mM CaCl2/20% (w/v) グリセロールを 5 mL 添加し、氷上でしっかりと懸濁する。

29. 清潔なマイクロチューブを 50 本程度用意し、無菌操作を心掛けながら、氷上で大腸菌懸濁液を 100 μL ずつ分注していく。

30. 分注した大腸菌懸濁液を液体窒素で急速冷凍し、-80℃で保存する。

31. 手順 18 で抽出、配列情報を Jude に確認したプラスミド溶液 10 μL を手順 30 で作製・保存したコンピューターカードに添加し、形質転換を行う。

32. 適切な抗生物質を含む 4 mL の LB 寒天培地へ大腸菌を播種し、37℃で 16~20 時間程度インキュベートし、コロニーを形成させる。Rosetta-gami™ B (DE3) pLysS の増殖は非常に遅いので培養時間を注意する。

33. 形成されたコロニーを適切な抗生物質を含む LB 液体培地へ播種し、37℃で 12~20 時間振盪培養する。初回は IPTG 誘導の濃度、時間などの条件検討を行う必要があるため、検討する条件に応じて培養数を設定する。

34. 新たな 4 mL の LB 液体培地を用意し、手順 33 で培養された大腸菌培養液を 100 μL 添加し、OD600 値が 0.4~0.6 に至るまで 37℃で振盪培養する。残りの大腸菌培養液は終濃度が 10~15%となるようにグリセロールを添加し、
フリーズストックとして保存する。
35. OD₆₀₀値が規定値に達したら、大腸菌培養液の入った試験管を直ちに氷上へ移し、30 分間インキュベートを行う。
36. タンパク質発現に適した IPTG 濃度を探すために、条件設定を行い、終濃度が 0〜2 mM の範囲で、段階的に濃度を振リ分け、それぞれの濃度で IPTG を添加していく。
37. 4〜37°C で 0〜48 時間震盪培養し、組換えタンパク質の発現誘導を行う。タンパク質発現に適した誘導条件を探るために、様々な条件を設定し、その都度検討する。
38. 培養液全量を 6,000 rpm で 1 分間遠心し、集菌を行う。
39. 菌体ペレットに菌体破砕バッファーを 400 μL 加え、良く懸濁する。
40. 氷上にてソニックーションを行い、菌体を破砕する。この際、菌体懸濁液の温度が上がらないように気をつける。
41. 菌体懸濁液が半透明になるまでソニックーションを数回繰り返す。
42. 14,000×g, 4°C で 30 分間遠心し、可溶性画分と不溶性画分に分離する。
43. 不溶性画分に 400 μL の菌体破砕バッファーを添加し、軽くソニックーションを行い、ペレットを懸濁する。
44. 可溶性画分と不溶性画分と共二 SDS-PAGE による組換えタンパク質の発現確認を行う。
45. 組換えタンパク質の発現誘導に最適な条件検討が完了したら、ラージスケールの培養へ移る。なお以降は不溶性画分からの発現タンパク質単離とそのリフォールディングに関して記述する。IPTG 濃度と誘導時間に関しては実施した数値で記述していく。
46. 手順 34 でフリーズストックした大腸菌を清潔なマイクロピペット先で突き、1 mL の SOC 培地で 15 分間回復させる。
47. 適切な抗生物質を含む LB 培地 50 mL に先の SOC 培地を全量添加し、37°C で 12〜24 時間震盪培養を行う。
48. 新たな 600 mL の LB 液体培地を用意し、手順 46 で培養された大腸菌培養液を 10 mL 添加し、OD₆₀₀ 値が 0.6 に至るまで 37°C で震盪培養する。
49. OD₆₀₀値が 0.6 に達したら、IPTG を終濃度 0.4 mM と成るように添加し、37°C で 4 時間震盪培養し、発現の誘導を行う。
50. 誘導が終了した大腸菌培養液を遠心瓶に入れ、6,000×g, 4°C で 10 分間遠心
し、集菌を行う。
51. 上清を取り除き、菌体湿重量を測定し、菌体ベレットに細胞溶解パッファーを20 mL 加え、良く懸濁し、50 mL のコニカルチューブへ移す。
52. 温度の上昇に注意し、大腸菌懸濁液が半透明になるまで氷上でソニケーションを行う。
53. 大腸菌懸濁液を12,000×g、4℃で30分間遠心し、上清を全て取り除く。
54. 1% Deyoxycholic acidを含む細胞溶解パッファーを30 mL 添加し、ベレットを洗浄する。
55. 12,000×g、4℃で30分間遠心し、上清を全て取り除く。
56. 1% Triton X-100を含む細胞溶解パッファーを30 mL 添加し、ベレットを洗浄する。
57. 12,000×g、4℃で30分間遠心し、上清を全て取り除く。
58. 手順56, 57を再度繰り返す。
59. 洗浄された封入体を40 mLの変性パッファーで再懸濁し、4℃で12時間穏やかに懸濁し、封入体の可溶化を行う。
60. 12,000×g、4℃で30分間遠心し、上清を回収し、上清にImidazoleを終濃度20 mMとなるように加える。
61. HisTrap HP カラム (GE Healthcare UK Ltd., little chalfont, UK) の平衡化を20 mM Imidazoleを含んだ変性パッファー5 mLで行う。
62. 手順60の溶液をカラムにロードする。
63. 20 mM Imidazoleを含んだ変性パッファー10 mLで非吸着画分を押出洗浄する。
64. 50 mM Imidazoleを含んだ変性パッファー10 mLで非吸着画分を押出洗浄する。
65. 250 mM Imidazoleを含んだ変性パッファー5 mLで吸着画分を溶出する。
66. 変性パッファーを外液として、透析を行う。
67. SDS-PAGEにて溶出画分の確認を行う。また、分光光度計を用いてタンパク質濃度を測定しておく。
68. 溶出パッファーを用いて、溶出画分のタンパク質濃度を0.1~0.2 mg/mLに調製する。
69. 希釈した溶出画分1 mLにDithiothreitolを終濃度10 mMとなるように加え、4℃で1時間インキュベートする。
70. 4 M Urea 透析バッファー 50 mL で 6 時間透析を行う。
71. 3 M Urea 透析バッファー 50 mL で 6 時間透析を行う。
72. 2 M Urea 透析バッファー 50 mL で 12 時間透析を行う。
73. 1 M Urea 透析バッファー 50 mL で 12 時間透析を行う。
74. 0 M Urea 透析バッファー 50 mL で 6 時間透析を行う。この操作をあと 2 回繰り返す。
75. 透析内液を 5,800×g, 4℃ で 30 分間遠心し、上清を回収する。
76. SDS-PAGE 及び吸光度の測定を行い、確認する。

4-3-7. ウェスタンブロッティング
本項では SDS-PAGE とウェスタンブロッティングの実験操作に関して記述する。作製しているゲルは約 15%である。なお、ウェスタンブロッティングのシグナル検出には ECL Western Blotting Detection Reagents (GE Healthcare UK Ltd., little chalfont, UK) を使用した。

★ 分離ゲルストック溶液

<table>
<thead>
<tr>
<th>溶液</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>1.89 mL</td>
</tr>
<tr>
<td>1.5 M Tris-HCl (pH 8.8)</td>
<td>2 mL</td>
</tr>
<tr>
<td>10% SDS</td>
<td>80 µL</td>
</tr>
</tbody>
</table>

★ 濃縮ゲルストック溶液

<table>
<thead>
<tr>
<th>溶液</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>1.9 mL</td>
</tr>
<tr>
<td>0.5 M Tris-HCl (pH 6.8)</td>
<td>750 µL</td>
</tr>
<tr>
<td>10% SDS</td>
<td>30 µL</td>
</tr>
</tbody>
</table>

★ 10×泳動バッファー

<table>
<thead>
<tr>
<th>溶液</th>
<th>量</th>
<th>稀释倍数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>3.03 g</td>
<td>(250 mM)</td>
</tr>
<tr>
<td>Glycine</td>
<td>14.4 g</td>
<td>(1.92 M)</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate</td>
<td>1 g</td>
<td>(1%)</td>
</tr>
</tbody>
</table>

脱イオン水で 100 mL にメスアップ Total 100 mL

★ 6×サンプルバッファー

<table>
<thead>
<tr>
<th>溶液</th>
<th>量</th>
<th>稀释倍数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 M Tris-HCl (pH 6.8)</td>
<td>7 mL</td>
<td>(0.35 M)</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate</td>
<td>1 g</td>
<td>(10%)</td>
</tr>
<tr>
<td>成分配当</td>
<td>量</td>
<td>濃度</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>グリセリン</td>
<td>3 mL</td>
<td>(30%)</td>
</tr>
<tr>
<td>ドスチオレート</td>
<td>0.93 g</td>
<td>(6 mM)</td>
</tr>
<tr>
<td>ブロモフェノール blue</td>
<td>適量</td>
<td></td>
</tr>
</tbody>
</table>

↓ 脱イオン水で 10 mL にメスアップ Total 10 mL
↓ 小分け分注し, -20°C で保存する。

* プロッティング溶液 A
<table>
<thead>
<tr>
<th>成分配当</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>3.63 g</td>
<td>(300 mM)</td>
</tr>
<tr>
<td>メタノール</td>
<td>5 mL</td>
<td>(5%)</td>
</tr>
</tbody>
</table>

脱イオン水で 100 mL にメスアップ Total 100 mL

* プロッティング溶液 B
<table>
<thead>
<tr>
<th>成分配当</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>0.3 g</td>
<td>(25 mM)</td>
</tr>
<tr>
<td>メタノール</td>
<td>5 mL</td>
<td>(5%)</td>
</tr>
</tbody>
</table>

脱イオン水で 100 mL にメスアップ Total 100 mL

* プロッティング溶液 C
<table>
<thead>
<tr>
<th>成分配当</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>0.3 g</td>
<td>(25 mM)</td>
</tr>
<tr>
<td>6-Aminohexanoic acid</td>
<td>0.52 g</td>
<td>(40 mM)</td>
</tr>
<tr>
<td>メタノール</td>
<td>5 mL</td>
<td>(5%)</td>
</tr>
</tbody>
</table>

脱イオン水で 100 mL にメスアップ Total 100 mL

* TBS-T
<table>
<thead>
<tr>
<th>成分配当</th>
<th>量</th>
<th>濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M Tris-HCl (pH 7.5)</td>
<td>30 mL</td>
<td>(10 mM)</td>
</tr>
<tr>
<td>NaCl</td>
<td>17.53 g</td>
<td>(100 mM)</td>
</tr>
<tr>
<td>20% Tween 20</td>
<td>15 mL</td>
<td>(0.1%)</td>
</tr>
</tbody>
</table>

脱イオン水で 3 L にメスアップ Total 3 L

1. SDS-PAGE ゲル作製用のガラスプレートとシールガスケットを70% エタノールとキムワイプで綺麗に拭き上げ、ガラスプレートにシールガスケットをセットし、クリップで挟み込む。
2. 0.025 g の Ammonium peroxodisulfate を脱イオン水 100 μL に溶かし、25% APS
溶液を作製しておく。
3. 以下の組成で試薬を混合する。
 - 分離ゲルストック溶液 3.97 mL
 - 30% (w/v) アクリルアミド溶液 4 mL
 - Tetramethylethylenediamine (TEMED) 6.4 μL
 - 25% APS 溶液 50 μL
4. 手順 1 で組み立てたゲルプレートに充分に混合した分離ゲル溶液を直ちに
 添える。なお、濃縮ゲルを添加するスペース、上部から 1〜2 cm、はゲル
 を注がない。
5. 静かに脱イオン水を 1 mL 上部から注ぎ、ゲルが固化するまで 15 分以上待
 つ。
6. 分離ゲルが固化したら、注いだ脱イオン水を取り除き、以下の組成で試薬
 を混合する。
 - 濃縮ゲルストック溶液 2.68 mL
 - 30% (w/v) アクリルアミド溶液 300 μL
 - Tetramethylethylenediamine (TEMED) 2.4 μL
 - 25% APS 溶液 25 μL
7. ゲルプレート充分混合した濃縮ゲル溶液を直ちに添加する。
8. コームを静かに濃縮ゲルに挿し、ゲルが固化するまで 15 分以上待つ。
9. 10×泳動バッファー 50 mL に脱イオン水を 450 mL 加える。
10. 泳動するサンプルと 6×サンプルバッファーを混合し、98°C で 3〜5 分間の熱
 変性を行う。
11. ゲルが固化したら、ウェルにサンプル及び分子量マーカーをアプロライし,
 適当な条件下で泳動を開始する。ウェスタンプロッティングへ移行しない
 場合は CBB などでゲルを染色し、泳動像を確認する。
12. 以降はウェスタンプロットに関して記述する。泳動終了後、PVDF メンブレ
 ンを適当な大きさに切り、Methanol に 30 秒間浸し、その後プロッティング
 溶液 B へ浸す。なお、以降操作は全て手袋を着用し、メンブレン及びゲル
 を直接触らないように気をつける。
13. メンブレンより大きく切り抜いた縦を 6 枚用意し、プロッティング溶液 A
 に 2 枚、B に 1 枚、C に 3 枚、それぞれ浸す。
14. プロッターにプロッティング溶液 A に浸した縦紙 2 枚を積層し、さらにそ
の上に B にプロッティング溶液 A に浸した濾紙 1 枚を積層する。なお、以降積層操作は気泡などを生じないように隙間無く設置する。

15. さらに、PVDF メンプレンを積層し、メンプレン上にプロッティング溶液 B を少量添加する。

16. ゲルをガラスプレートから外し、プロッティング溶液 B に一瞬浸し、直ちに PVDF メンプレン上に静かに積層し、ゲルにプロッティング溶液 C に浸した濾紙 3 枚をさらに積層する。

17. 積層した濾紙・メンプレン・ゲルがズレないように気を付けて、上から全体を押しつぶし圧着させる。

18. 最上層の濾紙にプロッティング溶液 C を少量添加し、プロッターのフタを静かに閉じる。

19. 通電条件はメンプレン 1 平方センチメートルあたり、2 mA 定電流で 45~60 分間行う。

20. 転写が完了したら、メンプレンを取り外し、Blocking Agent が終濃度 5% (w/v)になるよう TBS-T で希釈したプロッキング溶液にメンプレンを浸し、室温で 45 分以上、もしくは 4°C で 12 時間程度浸やかに震盪する。

21. メンプレン 1 平方センチメートルあたり 4 mL の TBS-T を用意し、プロッキングが完了したメンプレンを TBS-T で浸し、2 分間震盪しながら洗浄を行う。この洗浄を 2 回繰り返す。

22. 一次抗体を 0.1~1 μg/mL の濃度で希釈した TBS-T を 50 mL 用意し、メンプレンを浸し、室温で 1~2 時間もしくは 4°C で 12 時間程度浸やかに震盪し、抗原抗体を結合させる。

23. 手順 21 と同様にメンプレンの洗浄を 2 回行う。

24. TBS-T で 15 分間の洗浄を 1 回行い、さらに 5 分間の洗浄を 3 回行う。

25. 二次抗体を 5,000~10,000 倍希釈した TBS-T を調製し、室温で 1 時間抗原抗体反応を行う。

26. TBS-T で 2 分間の洗浄を 2 回行い、TBS-T で 15 分間の洗浄を 1 回行い、さらに 5 分間の洗浄を 3 回行う。

27. ECL Detection Reagent 1 と ECL Detection Reagent 2 を等量ずつ取り、これを混合する。

28. 洗浄したメンプレンをラップの上に設置し、調製した ECL 検出溶液を滴下し、上からラップを被せメンプレン隅々まで ECL 検出溶液を行き渡らせる。
29. 余分な ECL 検出溶液を除去し、X 線フィルムカセットにセットし、第 4 章 2 節 3 項に記した感光及び現像操作を行う。感光時間は 5~30 分程度であり、適宜調節する。また、検出後のメンブレンは TBS-T で濯ぎ、4℃ で一週間ほど保存が可能であり、手順 27 から再度操作を行うこともできる。

4-4. エビゲノム解析
4-4-1. ゲノム DNA のバイサルファイト処理
　本項では早津らの手法に従ったゲノム DNA へのバイサルファイト処理、及びバイサルファイト処理ゲノム DNA に対する PCR と DNA シークエンシングの操作方法に関して記述する (Hayatsu, 2008; Hayatsu et al., 2004; Shiraishi and Hayatsu, 2004)。なお、今回は塩基性[Asp^49]PLA2 (PjPLA-B [PjPLA 5], PjPLA-B'), PjPLA 6, IB 型豚 PL A2 遺伝子プロモーター領域のメチル化状態を毒腺、脾臓、肝臓の各組織で比較検証した。以降の操作で使用されるゲノム DNA はホンハブ (No. 3, No. 6, No. 9) とヒメハブ (No. 23) の各組織からそれぞれ抽出されものである。なお、本実験で使用した合成オリゴ DNA の詳細とその組み合わせに関しては、第 7 章に別途記載しているので参照されたい。

1. 効率的に標的遺伝子の解析領域を検出するため、それ以外の領域を制限酵素により消化し、またバイサルファイト変換効率をあげるために、ゲノム DNA の断片化を行う。DNA 20 µg を制限酵素で完全消化する (塩基性[Asp^49]PLA2 遺伝子プロモーター領域解析時は Hinc II, Stu I, Sty I, PjPLA 6 プロモーター領域解析時は Bcl I, Afl II, IB 型豚 PLA2 遺伝子プロモーター領域解析時は Msp I, Bst XI)。
2. TE 飽和フェノールと PCI で除タンパクをし、エタノール沈殿後、Milli-Q で再溶解させる。
3. 制限酵素処理ゲノム DNA の濃度測定をし、0.08 µg/µL になるように調製する。
4. 以下に示す Sodium bisulfite 溶液を 90℃ 条件下で調製し、遮光 70℃ で使用時まで保存する。ただし、Sodium bisulfite 溶液は劣化しやすいので、用時調製を心掛ける。
　・Sodium bisulfite 2.08 g
・Ammonium sulfite, 1-hydrate 0.67 g
・50% Ammonium hydrogensulfite solution (pH 4.5) 5 ml

5. 50 µL のゲノム DNA 溶液に 6 N NaOH を 2.5 µL 添加し、37°C で 30 分間インキュベートし、ゲノム DNA を一本鎮化させる。

6. 一本鎮化したゲノム DNA 溶液に上記調製の Sodium bisulfite 溶液 545 µl を添加し、ピベッティングにて穏やかに混合する。

7. 遮光下、95°C で 30 秒間インキュベートし、ゲノム DNA を熱変性させる。

8. 続けて、遮光下、70°C で 40 分間インキュベートし、バイサルファイト処理を行う。

9. バイサルファイト処理済みゲノム DNA に Wizard® DNA Clean-Up system (Promega Corporation, Madison, WI, USA) の Resin を 1 ml を添加し、ピベッティングにて穏やかに混合する。

10. Minicolumn に Syringe Barrel をセットし、Resin を添加した DNA 溶液を穏やかに滴下する。

11. シリコンチューブで Minicolumn 溶出口にシリンジを接続し、シリンジを引き滴下した DNA 溶液を Minicolumn に通し、脱塩を行う。

12. 2 mL の 80% Isopropanol を Syringe Barrel に添加し洗浄を行う。この操作を 2 回繰り返す。Minicolumn を Syringe Barrel から取り外し、Minicolumn を清潔なマイクロチューブにセットし、15,000 rpm で 2 分間遠心し、Isopropanol を完全に除去する。

13. Minicolumn を清潔なマイクロチューブにセットし、70°C に温めた Milli-Q 90 µL を Minicolumn に静かに滴下し、DNA の溶出を行う。

14. 溶出 DNA 溶液に 2 N NaOH を 11 µl 添加し、37°C で 10 分間インキュベートし、脱スルホン化させる。

15. 脱スルホン化した溶出 DNA 溶液に 4 M 酢酸アンモニウム (pH 7.0) を 150 µL、グリコーヘン溶液 (20 mg/ml) を 2 µL、100% エタノールを 750 µL を加え、穏やかに転倒混和する。

16. 15,000 rpm、室温で 20 分間遠心し、沈殿した DNA ペレットを崩さないように上清をすべて取り除く。

17. 沈殿した DNA ペレットに 70% エタノールを適量加え、15,000 rpm、4°C で 5 分間遠心し、沈殿した DNA ペレットを崩さないように上清をすべて取り除く。
18. 5〜15分間、風乾を行い、バイサルファイト処理 DNAを20μLのTEパッファーで溶解させる。使用時まで20℃で保存する。

4-4-2. バイサルファイト PCR と TA クローニング
1. 配列内にCpGサイトを含むべく含有孔発シシン残基をチミン残基に置換し設計されたセンスプライマーと配列内にGpCサイトを含むべく含有ダグアミン残基をアデニン残基に置換し設計されたアンチセンスプライマーを用いて、バイサルファイトPCRを行う。なお、バイサルファイト処理したDNAはα型DNAポリメラーゼでの増幅が難しいため、Pol I型のTaqポリメラーゼを用いて行う。以下の組立てで試薬を氷上で混合する。
 - Milli-Q to 50μL
 - AmpliTaq Gold® 360 Master Mix 25μL (1×)
 - GC Enhancer 2μL
 - センスプライマー (25μM) 0.6μL (0.3μM)
 - アンチセンスプライマー (25μM) 0.6μL (0.3μM)
 - バイサルファイト処理 DNA 2μL
 Total 50μL

2. 以下のサイクル条件でバイサルファイトPCRを行う。
 Predenature 95℃, 10分間
 Denature 95℃, 30秒間
 Annealing 55℃, 30秒間 × 30〜40サイクル
 Extension 72℃, 40秒間
 Extension, dA-attached 72℃, 10分間
 Preservation 4℃, ∞

3. アガロースゲル電気泳動を行い、増幅バンドを確認する。
4. 目的の増幅バンドが確認できたら、アガロースゲルからの増幅 DNA断片の切り出し、精製を行う。
5. 回収された精製 DNA は Milli-Q で再懸濁し、一部をアガロースゲル電気泳動し、濃度算出を行う。
6. pT7Blue T-Vector (Novagen Inc., a EMD Millipore company, Madison, WI, USA)
と精製 DNA のモル比が 1:6-10 になるように調製し、以下の組成で試葉を水上で混合する。

<table>
<thead>
<tr>
<th>材料</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>to 10 µL</td>
</tr>
<tr>
<td>pT7Blue T-Vector (50 ng/µL)</td>
<td>X µL</td>
</tr>
<tr>
<td>精製 DNA</td>
<td>X µL</td>
</tr>
<tr>
<td>Ligation High</td>
<td>2.5-5 µL</td>
</tr>
</tbody>
</table>

Total 10 µL

7. 16°C で 0.5-12 時間インキュベートし、ライゲーション反応を行う。完了後は 4°C で保存。

8. 以降、大腸菌への形質転換及びプラスミド抽出を行う。なお、pT7Blue はアンピシン耐性遺伝子を持っているため、アンピシン添加培地で培養を行う。抽出したプラスミドは使用時まで 4°C で保存する。

4-2-3. バイサルファイトシークエンス

1. サイクルシークエンス法を用いて抽出したプラスミドの DNA シークエンシングを行う。シークエンスプライマーは T7 Promoter プライマーもしくは Zero Blunt® TOPO® PCR Cloning Kit に付属している M13 Forward (~20), M13 Reverse プライマーを使用した。

2. DNA シークエンシング後のデータは Quantification tool for methylation analysis (http://quma.cdb.riken.jp/top/quma_main_j.html) を使って、メチル化のパターンなどを解析する。なお、バイサルファイト変換効率が 98.0%を下回るクローンに関しては解析から除外した。

4-5. 遺伝子コピー数解析

4-5-1. リアルタイム PCR

本項では TaqMan ブロープ法を用いたリアルタイム PCR による SNP (Single nucleotide polymorphism) ジェノタイピングと濃度既知の標的遺伝子を組込んだプラスミドを用いた絶対定量による遺伝子コピー数の算定法について記述する。以降の操作で使用されるゲノム DNA はホンヘブ (No. 1, 3, 4, 6, 9), トカラヘブ (No. 10, 12, 14, 15) からそれぞれ抽出されものである。なお、本実験で使用した合成オリゴ DNA 及び TaqMan ブロープの詳細に関しては、第 7 章に別途記載し
ているので参照されたい。

■ SNP ジェノタイピング

1. 標的遺伝子の SNP 領域を特異的に増幅させるセンスプライマーとアンチセンスをそれぞれ設計し、その増幅産物の中心付近にアレルを識別する TaqMan プローブを設計する。今回は [Lys49]PLA2 アイソザイム遺伝子の第 3 エクソン領域を特異的に増幅させる CNVBP-F2 と CNVBP-R1 プライマーと、BP-I 遺伝子を特異的に検出する FAM BP exon 3 G プローブと BP-II と BP-III 遺伝子を特異的に検出する HEX BP exon 3 A プローブをそれぞれ設計した。

2. 事前に通常のゲノミック PCR を行い、単一バンドが増幅されるか充分に確認を行い、条件検討を行う。

3. BP-I そして BP-II 遺伝子の第 3 エクソンをそれぞれ pCR®-Blunt II-TOPO®ベクターに組み込んだ 3,610 bp のプラスミドを用意し、分光光度計を用いてその核酸濃度を算出した。さらに、以下の 2つの数式を用いてプラスミドのコピー数を算出し、それぞれ適切なコピー数となるように調製した。

\[
\text{コピー数算出式:} \quad \frac{\text{二本鎖 DNA 塩基長 (bp)} \times 330 \text{ daltons} \times 2 \text{ nt/bp}}{\text{核酸の分子量 (g/mole)}}
\]

\[
\text{コピー数算出式:} \quad \frac{\text{核酸濃度 (ng/µL)}}{\text{核酸の分子量 (g/mole)}} \times 6.02 \times 10^{24}
\]

4. 遮光下にて、以下の組成で試薬を氷上で混合する。サンプル間での誤差を少なくなるために、ゲノム DNA 以外を先に調製しておく、それを各チュープへと分注した。なお、チュープはリアルタイム PCR の蛻光検出に対応した透過性の高いフラットキャップのものを使用した。今回はゲノム DNA、NTC (Non-template control)、及び BP-I そして BP-II 遺伝子をそれぞれ pCR®-Blunt II-TOPO®ベクターに組込んだプラスミドをそれぞれテンプレートとして用いた。

<table>
<thead>
<tr>
<th>材料</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>to 20 µL</td>
</tr>
<tr>
<td>THUNDERBIRD® Probe qPCR Mix</td>
<td>10 µL (1×)</td>
</tr>
<tr>
<td>センスプライマー (10 µM)</td>
<td>0.6 µL (0.3 µM)</td>
</tr>
<tr>
<td>アンチセンスプライマー (10 µM)</td>
<td>0.6 µL (0.3 µM)</td>
</tr>
<tr>
<td>FAM BP exon 3 G プローブ (10 µM)</td>
<td>0.4 µL (0.2 µM)</td>
</tr>
<tr>
<td>HEX BP exon 3 A プローブ (10 µM)</td>
<td>0.4 µL (0.2 µM)</td>
</tr>
<tr>
<td>ゲノム DNA (100 ng/µL)</td>
<td>1 µL (5 ng/µL)</td>
</tr>
</tbody>
</table>

Total 20 µL

96
5. MiniOpticon™リアルタイム PCR システム（Bio-Rad Laboratories, Inc., Hercules, CA, USA）の本体背面の電源スイッチと接続 PC 端末の電源を押し起動させる。

6. 接続端末の OS 起動後、デスクトップの Bio-Rad CFX Manager™ソフトウェアを起動させ、MiniOpticon™リアルタイム PCR システム本体とのリンクが確立されているか確認する。

7. Startup Wizard ウィンドウを開き、初回ログイン時には Create a new Run に入れる、使用機種名に MiniOpticon を選択する。

8. File > Open > Protocol と進み、プロトコルの設定を行う。初回時には Create New…ボタンを押し、Express Load 欄の適当なプリセットプロトコルを選択し、Edit Selected…ボタンを押し、プロトコルの編集を行う。次回からは Select Existing…のボタンを押せば前回使用したプロトコルが呼び出される。

9. Sample Volume を 20 µL に設定し、各ステップの温度・時間を変更する。サイクル数の設定は GOTO ステップを押し、どのステップを何回繰り返すか（行いたいサイクル数-1）入力する。プロトコルの編集が完了したら、OK を押し、設定を保存する。今回は以下の設定で行った。

Predenature	95°C, 3 分間
Denature	95°C, 15 秒間
Annealing, Extension	60°C, 30 秒間
Plate Read	
Preservation	4°C, ∞

10. Run Setup ウィンドウの Next ボタンを押し、プレート情報の設定を行う。初回時には Create New…ボタンを押し、Express Load 欄の適当なプリセットプレート設定を選択し、Edit Selected…ボタンを押し、プレート設定の編集を行う。次回からは Select Existing…のボタンを押せば前回使用したプロトコルが呼び出される。

11. Plate Type ウィンドウメニューから Settings タブを選択し、Plate Type を押し、実際に使用するプレートの色を選択する。今回は BR Clear を選択した。

12. Scan Mode タブから自身が使用する蛍光色素に対応する検出チャネルを選択し、Select Fluorophores…タブから自身が使用する蛍光色素にチェックを
入れ選択する。今回は All Channels でスキャンし、蛻光色素は FAM と HEX を選択した。

13. ウェル情報を編集する。サンプルを入れるウェルをドラッグで一括選択し、Sample Type タブからウェルに添加したサンプルの種類及び測定する蛻光色素を選択し、Target Name に遺伝子名を入力する。

14. 続けて、個々のウェルを選択し、Sample Name にサンプル名称を入力する。

15. 実験誤差検出のためにレプリケートサンプルを用意している場合、レプリケートサンプルウェルをドラッグで一括選択し、Replicate Series タブを選択し、レプリケート数、開始番号、方向を選択し、レプリケート設定を行う。

16. 絶対定量で濃度既知のスタンダードサンプルを用いる場合、そのウェルをドラッグで一括選択し、Dilution Series タブから希釈系列の設定を行う。

17. プレート情報の編集が完了したら、OK 押し、設定を保存する。

18. MiniOpticon™リアルタイム PCR システムのサーマルサイクライタールのリッ ドをスライドさせ、各チューブをプレートにセットし、リッドを開じる。

19. Start Run ボタンを押し、リアルタイム PCR を開始する。

20. PCR 終了後、Bio-Rad CFX Manager™ソフトウェアで增幅曲線の確認を行い、 Allelic Discrimination 機能を用いて 35 サイクル時の FAM 及び HEX の両蛻光強度に基づくアレル分布図を作製する。

■ 絶対定量による遺伝子コピー数の算定

1. 標的遺伝子を特異的に増幅させるセンスプライマーとアンチセンスをそれぞれ設計し、その増幅産物の中心付近に TaqMan プローブを設計する。今回 は[Lys⁴⁹]PLA₂ アイソザイム遺伝子の第 3 エクソンから第 4 エクソン前半領 域を特異的に増幅させる CNVBP-F2 と CNVBP-R2 プライマーと、ほとんど 全ての IIA 型 PLA₂ アイソザイム遺伝子の第 3 イントロン領域を特異的に増 幅させる NSP-F1 と NSP-R1 プライマー、そして IIA 型 PLA₂ 遺伝子アイソ ザイムを特異的に検出する FAM PLA₂ gene プローブをそれぞれ設計した。

2. 事前に通常のゲノミック PCR を行い、単一バンドが増幅されるか充分に確 認を行い、条件検討を行う。

3. BP-I 遺伝子を pCR®-Blunt II-TOPO®ベクターに組み込んだプラスマドを用意 し、分光光度計を用いてその核酸濃度を算出し、コピー数に応じた段階希 釈系列を調製する。
4. 遮光下にて、以下の成で試薬を水で混合する。今回はゲノム DNA, NTC (Non-template control), 及び BP-I 遺伝子を pCR®-Blunt II-TOPO®ベクターに組込んだプラスミドの段階番発系列をそれぞれテンプレートとして用いた。

<table>
<thead>
<tr>
<th>項目</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli-Q</td>
<td>to 20 μL</td>
</tr>
<tr>
<td>THUNDERBIRD® Probe qPCR Mix</td>
<td>10 μL</td>
</tr>
<tr>
<td>センスプライマー (10 μM)</td>
<td>0.6 μL</td>
</tr>
<tr>
<td>アンチセンスプライマー (10 μM)</td>
<td>0.6 μL</td>
</tr>
<tr>
<td>FAM PLA2 gene プローブ (10 μM)</td>
<td>0.4 μL</td>
</tr>
<tr>
<td>ゲノム DNA (100 ng/μL)</td>
<td>1 μL</td>
</tr>
<tr>
<td>*</td>
<td>(5 ng/μL)</td>
</tr>
<tr>
<td>Total</td>
<td>20 μL</td>
</tr>
</tbody>
</table>

5. 以下、前述同様の操作で MiniOpticon™リアルタイム PCR システムを起動させ、プロトコル、プレート情報の編集を行う。今回は以下の設定で行った。

<table>
<thead>
<tr>
<th>項目</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predenature</td>
<td>95°C, 3 分間</td>
</tr>
<tr>
<td>Denature</td>
<td>95°C, 15 秒間×40 サイクル</td>
</tr>
<tr>
<td>Annealing, Extension</td>
<td>60°C, 30秒間</td>
</tr>
<tr>
<td>+ Plate Read</td>
<td></td>
</tr>
<tr>
<td>Preservation</td>
<td>4°C, ∞</td>
</tr>
</tbody>
</table>

6. 各チューブをプレートにセットし、リアルタイム PCR を開始する。

7. PCR 終了後、Bio-Rad CFX Manager™ソフトウェアで增幅曲線と検量線の確認を行い、検量線から各サンプルの初期量を求め、サンプル間での遺伝子の保有比率をそれぞれ比較する。

4-6. 染色体解析

4-6-1. FISH 解析

本項では FISH (Fluorescence in situ hybridization) 解析に用いたプローブ DNA の概要について記述する。なお, FISH 解析はクロモソームサイエンスラボ社 (Chromosome Science Labo Inc., Hokkaido, Japan) による委託解析によって行われた。
1. FISH 解析に用いる DNA プローブの準備を行う。ホンハブ（奄美大島）から IIE 型 PLA₂の cDNA とゲノム DNA 核酸配列、P/PLA2 [P/pgPLA 1a (A)] の cDNA 核酸配列をそれぞれ逆転写 PCR とゲノミック PCR によって獲得する。今回は IIE 型 PLA₂遺伝子の第 2 エクソンから第 4 エクソンまでの領域を含む 405 bp の cDNA プローブ、5' 及び 3' UTR までの領域を含む 2,616 bp の gDNA プローブをそれぞれ準備し、加えて P/pgPLA 1a (A) 遺伝子の 5' 及び 3' UTR までの領域を含む 530 bp の cDNA プローブを準備した。
2. pCR®-Blunt II-TOPO®ベクターに組み込み、必要量のプラスミドを抽出する。
3. ゲノム DNA プローブに関しては染色体を断片化させたゲノム DNA でマスクする必要があったため、断片化ゲノム DNA も必要量準備した。
4. FISH 解析はホンハブ培養細胞の分裂期中期の染色体に対して行われた。

4-7. バイオインフォマティクス手法を用いたドライな解析

4-7-1. Local BLAST 環境の構築

本項では Local BLAST の導入とその検索操作に関して記述する。Local BLAST を導入することで高度な検索設定のもとで高速な検索が行え、特定の配列情報のみを集積した独自のデータベースを構築することも可能である。なお、以降バイオインフォマティクス関連のプログラムを使用するにあたり、今回はプロセッサ 2.4 GHz Intel Core 2 Duo、メモリ 16 GB 1067 MHz DDR3、MacOS (ver. 10.6.8~10.9.5) を搭載した Macbook Pro を作業環境とし、必要に応じて、各々の解析ディレクトリには事前に PATH を通しておいた。

1. 付属するインストール CD から XcodeTools をインストールする。この作業は UNIX ベースのバイオインフォマティクス関連のプログラムをコンパイルするのに必要である。
2. NCBI (National Center for Biotechnology Information, Bethesda, MD, USA) のダウンロードサイトより、Mac OSX 対応の ncbi-blast-2.2.27+.dmg ファイルをダウンロードする。
3. ncbi-blast-2.2.27+.dmg ファイルを解凍し、ncbi-blast-2.2.27+.pkg ファイルのインストール作業を進める。
4. ターミナルを起動させ、データベースを格納するためのフォルダを作成する。今回はホームディレクトリに BLAST 解析用のディレクトリを作成し、
その中にデータベース格納用のディレクトリを作成した。

5. データベースの配列情報を fasta 形式で準備し、データベース格納用のディレクトリに保存する。

6. ターミナルから [makeblastdb –in (配列データ名) -dbtype nucl –hash_index] と入力し、makeblastdb コマンドを実行し、データベースを作成する。なお、タクソニコミデータベースを作成する際は–dbtype を prot に変更する。丸括弧内は自身で指定し、適宜変更する。

7. データベース格納用のディレクトリに入力ファイルとして検索したい配列情報を fasta 形式で保存し、ターミナルから [(任意の検索プログラムコマンド) –db (データベース名) –query (検索したい配列情報名) –out (任意の出力ファイル名)] と入力し、検索プログラムコマンドを実行し相対性検索を行う。なお、必要に応じてコマンドオプションの変更を行い、また閾値設定なども加えて検索を行う。

4-7-2. Local RepeatMasker 環境の構築

本項では Local RepeatMasker の導入とその検索操作に関して記述する。なお、RepeatMasker はリピート配列検索に特化したプログラムであり、導入に際して Perl (ver. 5.8.0 以上) と blast+の導入が必要要件である (Smit et al., 1996)。

1. RepeatMasker のサイトから Mac OSX 対応の RepeatMasker-open-3-3-0.tar.gz ファイルをダウンロードし、任意のディレクトリ下で解凍作業を進める。今回は/usr/local/に RepeatMasker ディレクトリとその中に解析データの格納ディレクトリ (RepeatMasker_File) を作成した。

2. Genetic Information Research Institute (Mountain View, CA, USA.) に申請を出し、反復配列データベースの配列データ (Repbase) を入手し、RepeatMasker 格納ディレクトリへ移しておく。

3. 検索エンジンである RMBlas (National Center for Biotechnology Information, Bethesda, MD, USA) と Tandem Repeats Finder (trf) (Boston University, Benson, 1999) をダウンロードし、RepeatMasker 格納ディレクトリ下で解凍し、インストール作業を進める。

4. ターミナルから RepeatMasker 格納ディレクトリへ移動し、[perl ./configure] と入力し、perl の場所、RepeatMasker の場所、trf の場所、rmblast の場所を設定する。

101
5. 解析データの格納ディレクトリに入力ファイルとして検索したい配列情報を `fasta` 形式で保存し、ターミナルから `[RepeatMasker -species (任意の生物種) -xsmall (検索したい配列情報名)]` と入力し、検索プログラムコマンドを実行し相同性検索を行う。なお、必要に応じてコマンドオプションの変更を行い、また閾値設定なども加えて検索を行う。

4-7-3. RAxML を用いた系統解析

本項では RAxML の導入とその操作に関して記述する。RAxML は最尤法を用いて系統樹探索を行うプログラムであり、最尤法系統樹探索では現在最も速い計算速度を有し、精度も高いことから最尤法で系統樹探索を行う場合 RAxML プログラムの使用が推奨されている (Stamatakis, 2014)。アラインメントにより整えられた核酸・アミノ酸の配列データを用いて、RAxML による最尤法で系統樹探索を行い、同時に Bootstrap 検定を行う。

1. RAxML ダウンロードサイトより、Mac OSX 対応の RAxML-7.2.8-ALPHA ファイルをダウンロードし、解凍を行う。

2. ターミナルを起動させ、RAxML を格納するためのフォルダを作成する。今回はホームディレクトリに RAxML 解析用のディレクトリを作成した。

3. RAxML-7.2.8-ALPHA ファイルを RAxML 解析用のディレクトリへ移し、ターミナルを起動させ、ターミナルから `[make –f Makefile. SSE3.PTHREADS. gcc]` と入力し、make コマンドを実行する。

4. 出力ファイルとして、ClastalW などのアラインメントプログラムで充分にアラインメントした配列データを用意し、NEXUS 形式で一度保存し、OTU (Operational taxonomic unit) 数及び配列長のデータと配列データのみを残し、PHYLIP 形式に手動で変換していく。拡張子も.nxs から.phy へ変更しておく。この時、別途パーセーションファイルを作ることで解析にパーセッション設定を取り入れることも可能である。

5. 成形した配列データを RAxML 解析用のディレクトリへ移し、ターミナルから `[./raxmlHPC-PTHREADS –T (CPU 数) –f (任意のアルゴリズム) –x (任意の 5 桁の乱数) –p (任意の 5 桁の乱数) –# (任意の bootstrap 回数) –m (任意の進化モデル) –s (任意のファイル名.phy) –q (任意のパーセーションファイル.txt) –o (任意の外群) –n (任意の出力ファイル名)]` と入力し、最尤法で系統樹探索を行う。
6. 出力されたファイルはFigTreeなどのソフトウェアを用いて、樹形の確認、及び編集を行う。

4-7-4. codemlプログラムを用いた K_A/K_S 解析
本項では PAML の導入と PAML に含まれる codemlプログラムの操作に関し
て記述する。PAML は尤発法に基づいて分子進化の仮説を解析するソフトウェ
アで、codeml は K_A/K_S 検定を行うことができるプログラムである (Yang, 2007)。
codeml では branch models, site models, branch-site models の 3 種類の解析が可能で
あり、対立仮説と帰無仮説の両方で codeml による各モデルを用いた K_A/K_S 値を
推定し、得られた尤度を用いて尤度比検定を行って、有意な結果を得られたかを
確認する。なお、branch models は遺伝子系統樹のある枝での正の自然選択が
働いたかを検定することができ、site models は枝間の K_A/K_S 値を变化させず、サ
イト間での K_A/K_S 値の変動を検出することができ、branch-site models は先の 2 つ
の解析モデルを組み合わせたものであり、ある特定の系統のある特定のサイト
に働いている正の自然選択を検出することが可能である。ここでは site models
での解析操作を記す。
1. PAML ダウンロードサイトより、Mac OSX 対応の paml4.8.macosx.tgz ファイ
ルをダウンロードし、任意のディレクトリ下で解凍作業を進める。
2. ターミナルから paml4.8 を解凍したディレクトリに移動し、.o 拡張子ファイ
ルを rm コマンドで全て取り除く。
3. src フォルダ下の Makefile を開き、2 行目を [CC=gcc] と書き換え、OS 対
応する行の#マークを取り除き、アクティブにし、ターミナルから [make –f
Makefile] と入力し、コンパイルを実行する。
4. [mv baseml basemlg codeml evolver pamp yn00 mcmctree chi2 ../bin] と入力し、
展開されたファイルを上位ディレクトリへ移動させる。
5. codeml を実行するための入力ファイルを作成する。アラインメントした配
列データを PHYLIP 形式に変換し、RAxML での系統樹探索を行い、簡易的
な系統関係を推定する。site models では枝間の距離は解析に影響しないので、
系統的な関係のみを最低限記述するだけでも構わない。ただし、配列情報
のアラインメントは PAL2NAL などの Perl スクリプトを用いて、タンパク
質コーディング領域の cDNA 配列を、アラインメントされたアミノ酸配列
に合わせる作業を事前に行っておく。

103
6. `codeml` を実行するためのコントロールファイルを作成する。テンプレート
の `codeml.ctl` ファイルを開き、`seqfile` を任意のアラインメントファイル名、
`treefile` を任意の系統樹ファイル名、`outfile` を任意の出力ファイル名へ書き
換える。

7. 続けて、`runmode` を 0, `seqtype` を 1, `CodonFreq` を 2, `clock` を 0, `model` を 0 へ
と書き換える。

8. 今回は正の自然選択の存在を仮定した進化モデルであるモデル 8 と正の自
然選択の存在を仮定しない進化モデルであるモデル 7, それぞれの K_A/K_S 値
を推定するので、`NSsites` を 8 と 7 それぞれに書き換える。つまり、コント
ロールファイルは対立仮説のモデル 8 と帰無仮説のモデル 7, 2 つのファイ
ルを用意する必要がある。

9. 他の箇所はオプション設定であり、必要に応じて数値の書き換えを行う。

10. モデル 8 とモデル 7 それぞれのコントロールファイルを保存し、ターミナ
ルから `codeml` 解析用のディレクトリへ移動し、`[./codeml codeml.ctl]` と入力
し、プログラムを実行する。モデル 8 とモデル 7 それぞれで実施する。

11. モデル 8 とモデル 7 それぞれの `mlc` 出力ファイルから対数尤度関数 `lnL` を探
し、$2\Delta lnL = (\text{モデル 7} \ lnL - \text{モデル 8} \ lnL) \times 2$ の値を算出する。

12. 自由度 2 の χ^2 (カイ 2 乗) 分布において、有意水準 5% (p=0.05) の値を PAML
ソフトウェアパッケージの CHI2 アプリケーションで確認し、$2\Delta lnL$ の値と
比較する。

13. $2\Delta lnL$ の値が自由度 2 の χ^2 分布において、有意水準 5%の値よりも大きければ
モデル 7 とモデル 8 の尤度が等しいという帰無仮説が棄却されるため、
正の自然選択を受けているサイトが存在するという結果が得られる。その
結果をもとにどのサイトが正の自然選択を受けているのかを `mlc` 出力ファ
イルから確認する。

4-7-5. mcmctree プログラムを用いた分岐年代推定

本項では mcmctree プログラムの導入とその操作に関して記述する。mcmctree
は PAML ソフトウェアパッケージに含まれており、ベイズ法に基づいて分岐年
代推定を行うプログラムである (Yang, 2007)。mcmctree はアラインメントした
配列データ、事前に推定した系統関係、化石制約などから分岐の年代を推定す
ることができ、解析には近似尤度計算が用いられ、進化速度の大きさを推定、
樹長の勾配ベクトルと分散共分散行列の推定, mcmctree による分岐年代推定の3ステップにより行われる。

1. mcmctree を実行するための入力ファイルを事前に作成する。アラインメントした配列データを PHYLIP 形式に変換し, RAxML での系統樹探索を行い, 系統関係を推定する。

2. RAxML による系統樹探索で得られた系統樹の根幹に化石情報から知られている大まかな分岐年代を書き加える。190 Mya (Million years ago) に分岐した場合は [@1.9] と書き加える。

3. 続いて, データセット全体の進化速度を大まかに推定し, 事前確率の値を導く。解析ディレクトリに移動し, baseaml.ctl ファイルを開き, seqfile を任意のアラインメントファイル名, treefile 任意の系統樹ファイル名 (手順 2 で大まかな分岐年代を書き加えたもの), outfile を任意の出力ファイル名へ書き換える。

4. 続けて, verbose を 1, runmode を 0, model を 7, clock を 1, getSE を 1 へと書き換える。他の箇所はオプション設定であり, 必要に応じて数値の書き換えを行う。今回は GTR+G モデルを用いた尤大法によって進化速度を推定する。

5. baseaml のコントロールファイルを保存し, ターミナルから baseaml 解析用のディレクトリへ移動し, [@baseaml baseaml.ctl] と入力し, プログラムを実行する。

6. mbl 出力ファイルに単位時間あたりの進化速度が出力される。

7. RAxML による系統樹探索で得られた系統樹の分岐に化石情報から分かっている分岐年代の範囲, 化石制約, を書き加える。下限制約はコーシー分布で制約を施すため, 事前にエクセルによる 97.5%分位点の計算と分布曲線の作成をしておき, その時の分布を制約と共に [L (下限年代, ロケーションパラメーター値, スケールパラメーター値, 左テイル確率)] と書き記す。また, 上限制約は [U (上限年代, 右テイル確率)], ペア制約は [B (下限年代, 上限年代, 左テイル確率, 右テイル確率)] と書き記す (Inoue et al., 2010)。また, 各テイル確率は Hard bound と Soft bound が選べ, 分布の立ち上がりを設定できる。

8. 樹長の勾配ベクトルと分散共分散行列を推定する。解析ディレクトリに移動し, mcmctree.ctl ファイルを開き, seqfile を任意のアラインメントファイルを開く。
ル名、treefile 任意の系統樹ファイル名（手順 7 で化石制約を書き加えたもの）、outfile を任意の出力ファイル名へ書き換える。
9. 続けて、ndata を 4, usedata を 3, clock を 2, model を 7 へと書き換える。他の節所はオプション設定であり、必要に応じて数値の書き換えを行う。GTR+G モデルを用いた最尤法によって推定を行う。今回は複数遺伝子座の解析を行ったので、ndata を 4 とした。
10. 続けて、rgene_gamma に手順 6 で推定した進化速度、sigma2_gamma に手順 2 で入力した化石情報から知られている根幹の大まかな分岐年代へとそれぞれ書き換える。
11. mcmctree のコントロールファイルを保存し、ターミナルから mcmctree 解析用のディレクトリへ移動し、[/mcmctree mcmctree.ctl] と入力し、プログラムを実行する。
12. out.BV 出力ファイルに枝長ベクトル、勾配ベクトル、枝長の分散共分散行列の推定値が出力される。
13. out.BV 出力ファイルのファイル名を in.BV と書き換える。
14. 再び、解析ディレクトリに移動し、先程保存した mcmctree.ctl ファイルを開き、outfile を任意の出力ファイル名、usedata を 2 へと書き換える。他の節所はオプション設定であり、必要に応じて数値の書き換えを行う。
15. mcmctree のコントロールファイルを保存し、ターミナルから mcmctree 解析用のディレクトリへ移動し、[/mcmctree mcmctree.ctl] と入力し、プログラムを実行する。
16. ターミナル画面にスクリーンアウトされる採択率が 20–40%の値にある場合は解析が上手く進んでいることを示しており、むしろこの値を大きく外れた場合は解析を中断し、mcmctree.ctl コントロールファイルの finetune parameters を調整する必要がある。
17. out_usedata2, mcmcoutput, FigTree.tree ファイルが出力される。解析結果は out_usedata2 出力ファイルに保存されており、分岐年代と 95%信頼区間が推定されている。
18. 同様の解析を数回行い、数回の mcmctree 解析の結果が収束しているか確認を行う。
5. 結果と議論
5-1. 比較ゲノム解析から明らかになった PLA2 遺伝子のゲノム構造とその進化

クサリヘビ科ヘビの IIA 型毒 PLA2 遺伝子クラスター領域の外縁領域のゲノム構造を明らかにするために, 2012年3月までに GenBank へ登録されているヘビ類の全 Expression sequence tag (EST) 塩基配列情報とホンハブの毒腺 EST 塩基配列情報（九州大学 生体防御医学研究所 トランスオミクス医学研究センターの服巻保幸先生, 柴田弘紀先生より提供), 加えて全ゲノム塩基配列情報が明らかとなっているビルマニシキヘビ (Castoe et al., 2013), キングコブラ (Vonk et al., 2013) の全ゲノム塩基配列情報をデータセットとしたデータベースをそれぞれ構築し, Local BLAST による検索環境を整え, 哺乳類, 鳥類, 両生類で既に報告されている IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIIA, XIIB 型の分泌型 PLA2 及び, クサリヘビ科ヘビの IIA 型毒 PLA2 遺伝子を Query 配列として, Local BLAST 上で tblastx による相対検索を行った。その結果, ホンハブ毒腺 EST データベースから IIE 型 PLA2 に高い相対性を示す3つのアイソタイプ, isotig03504 (read 9), isotig03505 (read 7), isotig19327 (read 4), を見出した。isotig03504 の推定アミノ酸配列は哺乳類などの既知 IIE PLA2 と 40~60%程度の相対性を示した一方で, isotig03505 と isotig19327 が示す相対性は 20~40%程度で, 明らかに PLA2 ではない配列を含み, さらに途中で分断されたような不完全な構造をしていた (Figure 27).

ビルマニシキヘビ全ゲノムデータベースからはクサリヘビ科ヘビの IIA 型毒 PLA2 遺伝子に高い相対性を示す遺伝子配列を含む2つのスキャフォールド, Scaffold259, Scaffold12688, 一方キングコブラ全ゲノムデータベースからは1つのスキャフォールド, Scaffold1015, をそれぞれ見出した。それらスキャフォールド内の配列情報を詳細に解析したところ, ビルマニシキヘビの IIA 型 PLA2 遺伝子は独立して Scaffold12688 に存在しており, Scaffold259 には Mitochondrial E3 Ubiquitin Protein Ligase 1 (MUL1) と Ovarian tumor domain-containing protein 3 (OTUD3) をコードする遺伝子に挟まれて IIF, IID, IIE 型の PLA2 に高い相対性を示す遺伝子がタンデムに並んでいた。同様に, キングコブラでも Scaffold1015 には Mitochondrial E3 Ubiquitin Protein Ligase 1 (MUL1) と Ovarian tumor domain-containing protein 3 (OTUD3) をコードする遺伝子に挟まれて IIF, IID, IIA, IIE 型の PLA2 に高い相対性を示す遺伝子がタンデム並んでいた。一方で, クサリヘビ
リヘビ科ヘビで見られるような重複した IIA 型 PLA2 遺伝子が集積するクラスター構造は見出せなかった (Yamaguchi et al., 2014) (Figure 28)。さらに、ヒト (GRCh37P.p13, NC_000001, GPC_000000025)，マウス (GRCm38.p2, NC_000070, GPC_000000777)，ニワトリ (Gallus_gallus-4.0, NC_006108, GPC_000000738) の分泌型 PLA2 をコードするゲノム領域を調べた結果、ビルマニシキヘビとキングコブラのゲノム領域で見出したように、II 型及び V 型の分泌型 PLA2 が OTUD3 遺伝子の隣に並んでいることが分かった (Figure 29)。興味深いことに、ヘビ類の II 型分泌型 PLA2 遺伝子は MUL1 と OTUD3 遺伝子に挟まれていたが、哺乳類と鳥類の II 型及び V 型分泌型 PLA2 遺伝子は Ubiquitin regulatory X domain (UBX) domain-containing protein 10 (UBXN10) 遺伝子と OTUD3 遺伝子に挟まれており，MUL1, Von Willebrand Factor A Domain Containing 5B1 (VWA5B1), UBXN10 遺伝子を含む大規模なゲノム領域で逆位が生じているようであった。

一方、クサリヘビ科ヘビの IIA 型の毒 PLA2 をコードする遺伝子は高度に重複し、ゲノムの特定領域に集積したクラスター構造を形成し、それらは一次構造がわずかに異なる構造をもつ分子、アイソサイムをコードしているために、現在主流であるショートリードの次世代シークエンサーを用いたホールゲノムショットガン法によるゲノム配列決定法ではアセンブリングが非常に困難である。そのため、私は 30~45 kbp のゲノム DNA 断片を組み込むことが可能なコスミドを用いて、ホンハブ (奄美)，トカラハブ (小宝島)，ヒメハブ (奄美大島)，それぞれのゲノムライブラリを構築し，IIA 型ハブ毒 PLA2 遺伝子を含む長鎖ゲノム断片の獲得を目指した。

コスミドを用いたゲノムライブラリの構築では in vitro packaging によりファージにベクターを取り込まれて宿主細胞へ導入するので、30~45 kbp サイズのゲノム DNA とコスミド DNA が互いに線状に連なったコンタメートを形成する必要がある。そのため、パルスフィールドゲル電気泳動によってホンハブ (奄美大島)，トカラハブ (小宝島)，ヒメハブ (奄美大島)，それぞれの抽出ゲノム DNA を分画し，ゲノムライブラリの構築に最適な平均塩基長をもつ，ホンハブ No. 3，トカラハブ No. 10，ヒメハブ No. 17 のゲノム DNA を用いてそれぞれのゲノムライブラリを構築することとした (Figure 30)。その結果，5,199 クローン (タイター: 1.04×10^5 cfu/ml) からなるホンハブゲノムライブラリと，1,380 クローン (タイター: 2.76×10^4 cfu/ml) からなるヒメハブゲノムライブラリをそれぞれ構築することができたが，トカラハブのゲノムライブラリに関してはタイ
ター値が極めて低かったため、今回はその作成を見送った。続いて、構築した両ライブラリーから IIA 型ハブ毒 PLA₂ 遺伝子を含むクローナをスクリーニングするために、一次スクリーニングとして PfpgPLA 1a (A) [PfPLA 7] と OoPLA₂-o3 遺伝子の第１エクソンから第３エクソンまでの領域を含む DIG 標識 DNA プローブを用いてコロニーハイプリダイゼーションを行い、ホンハブゲノムライブラリーからは 199 個、ヒメハブゲノムライブラリーからは 47 個の陽性反応を示すスポットが検出され、そのスポットに相当するクローナをピックアップした（Figure 31, 32）。さらに、IIA 型ハブ毒 PLA₂ 遺伝子を特異的に増幅することができる CHO5 と CHO3 プライマーを用いたコロニーPCR による二次スクリーニング（Figure 33, 34），増幅された PCR 産物をクローニングし、その内部配列をサイクルシークエンス法により決定した三次スクリーニング、抽出コスマドの制限酵素処理による消化断片の比較による四次スクリーニングを実施し、IIA 型ハブ毒 PLA₂ 遺伝子を含むゲノム断片をもつクローナをホンハブゲノムライブラリーから 2 つ、ヒメハブゲノムライブラリーから 1 つ見出した。ホンハブゲノムライブラリーの 11 番プレートの 78 番区画の陽性クローナを Pfl-1 クローナ、46 番プレートの 93 番区画の陽性クローナを Pfl-2 クローナ、ヒメハブゲノムライブラリーの 7 番プレートの 83 番区画の陽性クローナを Ovo-1 クローナとそれぞれ名付けた。また、三次スクリーニングでの DNA シークエンシングの結果から Pfl-1 クローナには PfPLA 1, PfPLA-N [PfPLA 4] に高い相同性を示す PLA₂ 遺伝子が、Pfl-2 クローナには PfPLA 1, PfBPI に高い相同性を示す PLA₂ 遺伝子が、Ovo-1 クローナには OoPLA₂-o2, OoPLA₂-o3 に高い相同性を示す PLA₂ 遺伝子が、それぞれ含まれていることが示された。加えて、ベクタープライマーである T7 Promoter シークエンスプライマーを用いてコスマド挿入ゲノム断片の末端に対する DNA シークエンシングを行ったところ、Pfl-1 クローナは PfPLA 1 のプロモーター領域に高い相同性を示す配列、Pfl-2 クローナは PfPLA 5 の第 1 イントロンに高い相同性を示す配列、Ovo-1 クローナは既知 PLA₂ 遺伝子クラスター領域外の配列を末端に持つことが明らかとなった。そこで、今回は PLA₂ 遺伝子のコピー数が少ないことから配列アセンプリングが容易だと考えられる Ovo-1 クローナの一次構造決定を北海道システムサイエンス社に委託して、次世代シークエンサー GS FLX+ システムでの解読と配列アセンプリングを実施した。
規グループの PLA_2遺伝子群

ホンハブ毒腺 EST データベースから見出された IIE 型 PLA_2に高い相関性を示す isotig03504 の配列情報をもとに、日本南西諸島のクサリヘビ科ヘビの IIE 型 PLA_2遺伝子とその周辺配列のゲノム構造を決定した。まず、SPII-3 と SPII-2 プライマーを用いたゲノミック PCR ではホンハブ、トカラハブ、サキシマハブ、ヒメハブの全てのヘビゲノムから 4 つのエクソンと 3 つのイントロン構造をもつ約 2.6 kb プ IIE 型 PLA_2に高い相関性を示す新規 PLA_2遺伝子が増幅された (Figure 35)。これらクサリヘビ科ヘビの新規 PLA_2遺伝子の塩基配列を Query として Web BLAST 上で blastn による相関性検索を行ったところ、2012 年にナミヘビ科毒蛇であるプームスラングヘビ (Dispholidus typus), オオブタハナヌスヘビ (Leioheterodon madagascariensis) の両ヘビから新たに単離された IIE 型 PLA_2をコードする毒腺由来の cDNA クローン (JQ340882, JQ340883, JQ340884, JQ340885, JQ340886) に非常に高い相関性を示した (Fry et al., 2012)。今回単離された日本南西諸島のクサリヘビ科ヘビの新規 PLA_2遺伝子配列より推定されたアミノ酸配列は、ナミヘビ科毒蛇の IIE 型 PLA_2 と 60–80%程度の相関性を示し、さらには成熟タンパク質配列に基づいた系統解析の結果からも今回単離されたクサリヘビ科ヘビの新規 PLA_2遺伝子は IIE 型 PLA_2をコードしていることが明らかとなった (Figure 36, 37)。これらホンハブ、トカラハブ、サキシマハブ、ヒメハブの IIE 型 PLA_2をそれぞれ PfiIEPLA_2, PaIEPLA_2, PeliIEPLA_2, OolIEPLA_2 と名付けた (Yamaguchi et al., 2014)。さらに、ホンハブとヒメハブにおける IIE 型 PLA_2の発現経路を同定するために SPIIRRT-1 と SPIIRRT-2 及び SPIIRRT-3 のプライマーを用いて行った逆転写 PCR によって、ホンハブとヒメハブ共同毒腺での発現が顕著であること、肺でもわずかながら発現していることが分かった (Figure 38)。興味深いことに、ヘビ族の IIE 型 PLA_2のアミノ酸配列の C 末端には哺乳類などの IIE 型 PLA_2とは明らかに異なる 17 残基程度のヘビ族特異的なペプチドと 6–13 残基に渡る C 末端の延長配列が見出された (Figure 36)。この C 末端の差異が毒としての機能に関連する構造因子ではないかと期待される。また、この領域に含まれるシステイン残基の数と位置がハブ種で異なっており、ヘビ族 IIE 型 PLA_2の C 末端に関しては機能的制約が低く多様性を獲得しやすい領域であることも推測される。系統解析の結果からもヘビ族の IIE 型 PLA_2のクレードは哺乳類のクレードよりも分散しており、進化速度が速いことが推測された (Figure 37)。そこで、IIE 型 PLA_2オーソローグ遺伝子間での K_N/K_S値を codeml
プログラムのsite modelで算定したが、正の選択を受けたことを示す有意な結果を得ることはできなかった（Figure 39）。つまり、ヘビ族のIIE型PLA₂は哺乳類系統などと比べると比較的速い速度で多様性を獲得しているが、あくまでも中立的な範囲で多様性を獲得したと考えられる。クサリヘビ科のIIA型PLA₂アイソサイムである[Lys⁴⁹]型の毒PLA₂は活性中心にアミノ酸置換があるため、PLA₂活性は低いとされるが、細胞膜表面への親和性を有するC末端配列が細胞膜の構造的な不安定化を誘引することで細胞障害を引き起こすと考えられており（Andrião-Escarso et al., 2000; Lomonte and Gutiérrez, 2011; Lomonte and Rangel, 2012; Montecucco et al., 2008; Mora-Obando et al., 2014），加えて、IIF型PLA₂にも哺乳類でのみ見られるC末端の延長配列が存在し、そこに含まれているシステイン残基の数も哺乳類種間で異なっており、このC末端の延長配列は酵素活性を増大させるとの報告もある（Murakami et al., 2002a）。今回見出されたヘビ族IIE型PLA₂のC末端の特徴的な構造も類似の機能を有し、同様な機構で細胞膜表面に親和し、集積するのかもしれない。マウスなどの哺乳動物ではIIE型PLA₂はIIA型PLA₂の機能を補完することが示唆されており、特に肺などでの発現は感染性の細菌の細胞膜の破壊などに関与しているとされ（Murakami et al., 2002b; Touqui and Wu, 2003），今回観察された肺でのわずかな発現は同様の機能を示唆するものかもしれない。

クサリヘビ科ヘビのIIE型PLA₂の生理機能を調べるために、大腸菌による組換えタンパク質の発現を試みた。ホンハブのIIE型PLA₂の組換えタンパク質は大腸菌内で十分量発現するものの、封入体を形成することが示され、低IPTG濃度での誘導、低温誘導、レアコードンやジルフィド結合のフォールディングに高い改善効果を示すRosetta-gami™ B（DE3）pLysS大腸菌株の使用などによる対策を講じたが、可溶化は見込めなかった（Figure 40）。そこで段階透析法を利用した封入体のリフォールディングを試みたが、巻き戻しの効率は非常に悪く生理機能解析に用いるだけの十分な量を得ることはできなかった。元来、分泌型の毒PLA₂は分子内のシスティン残基が多いため、封入体を形成しやすい傾向があり、大腸菌での可溶化PLA₂の組換えタンパク質の発現や封入体のリフォールディングは難しいと考えられる。今後は酵母やカイコなどでの発現を検討していきたい。また、ホンハブ粗毒中にIIE型PLA₂が存在するかを検証するために、ホンハブIIE型PLA₂のC末端合成ペプチド（CPRWAPTKGG）に対する抗体を用いたアフィニティークロマトグラフィーを実施したが、粗毒からはIIE型PLA₂

111
を単離することはできなかった (Figure 41)。ホンハブ消毒のRNA-seqデータではIIA型の[Lys49]PLA2であるBPIのRPKM (Reads Per Kilobase of exon per Million mapped reads)が30.2であるのに対して、IIE型PLA2は4.3であった。つまり、IIE型PLA2は発現量が非常に少なく、毒としてはマイナーな成分であると考えられる。また、クサリヘビ科ヘビのIIE型PLA2遺伝子の染色体での遺伝子座を探るために、Ligation-mediated PCRとLong PCR及びFISH解析 (クロモソームサイエンスラボ社に委託)を行った (Figure 35, 42)。その結果、クサリヘビ科ヘビのIIE型PLA2遺伝子の3’下流には共通してOTUD3遺伝子が存在しており、このシンテニ (synteny)は既に全ゲノム情報が明らかになっている哺乳類、鳥類、キングコブラ、ビルマニシキヘビのゲノムの分泌型PLA2遺伝子クラスターでも保存されていることが分かった。加えて、IIE型PLA2遺伝子の5’上流にはホンハブ (奄美大島)ではPfPLA-B’遺伝子、トカラハブではPtPLA-B遺伝子、サキャシマハブではPcBP(R)-II遺伝子、ヒメハブではOoPLA2-α3遺伝子がそれぞれ接続していることが分かった。FISH解析でも、IIE型PLA2遺伝子がIIA型のハブ毒PLA2遺伝子とホンハブのマイクロ染色体に共局在していることが示された (Figure 42)。IIA型のハブ毒PLA2遺伝子がマイクロ染色体の2つの遺伝子座に局在することは以前に池田らによって報告されていたが (Ikeda et al., 2010), PfiIEPLA2とPfpgPLA1a [PfPLA7] cDNAをプローブとしたFISH解析でもそのシグナルは2つの遺伝子座に共局在していた。一方で, PfiIEPLA2のgDNAをプローブとしたFISH解析ではそのシグナルは1つの遺伝子座にしか確認されなかった。第3項で詳細に後述するが、クサリヘビ科ヘビのIIE型毒PLA2遺伝子の遺伝子間領域にはIIE型PLA2遺伝子に高い相同性を示す配列が断片化して散在しており,cDNAプローブによるFISH解析ではそのIIE型PLA2遺伝子に相同な断片化配列を検出したのではないだろうか。つまり、ホンハブのマイクロ染色体における分泌型PLA2遺伝子クラスターの構造は完全長をコードするPfiIEPLA2の5’上流にIIA型の毒PLA2遺伝子とPcRTF,さらにはIIE型PLA2遺伝子に相同な断片化配列がタンデムに連なったゲノム構造をしており、2つの遺伝子座に存在するIIA型の毒PLA2遺伝子クラスターは分断され離れた状態であることが考えられる。ホンハブにおけるIIA型の毒PLA2遺伝子が集積する2つの遺伝子座のゲノム構造と遺伝子座間の関係性を知るためには、後述する分泌型PLA2遺伝子クラスターのクラスター境界周縁部に位置するIIF型PLA2遺伝子, MUL1遺伝子, OTUD3遺伝子のプローブを用いたホンハブ染色体に対する
FISH解析、さらにはヒメハブ、トカラハブ、サキシマハブなどの他のクサリヘビ科ヘビやナミヘビ科・コブラ科などのヘビ染色体における分泌型PLA₂遺伝子クラスターの染色体局在をFISH解析で調べることが有効だと考えられ、今後の検討課題としていきたい。

クサリヘビ科ヘビのIIA型毒PLA₂遺伝子クラスターの特異なゲノム構造から、それらと哺乳類や鳥類でも保存されているII型及びV型PLA₂が存在する分泌型PLA₂遺伝子クラスターとの関係性については、ヘビ毒PLA₂を扱う研究者の間でこれまで深く議論されてこなかった。しかし、今回IIA型のハブ毒PLA₂遺伝子とIIIE型PLA₂遺伝子そしてOTUD3遺伝子がタンデムに連なって同一染色体上に局在していることがクサリヘビ科ヘビで示され、クサリヘビ科ヘビのIIA型毒PLA₂遺伝子クラスターの原型が、生物普遍的に保存されている非毒性のII型及びV型PLA₂が存在する分泌型PLA₂遺伝子クラスターであることを初めて示唆した(Yamaguchi et al., 2014)。

以上の観察に基づいて、クサリヘビ科ヘビのIIA型毒PLA₂遺伝子クラスターとその近傍に潜むと推測されるIID型、IIIF型PLA₂遺伝子、加えてIIIF型PLA₂遺伝子の3'下流に存在すると考えられるMULI遺伝子の同定を行った。構築したLocalBLASTデータベースを参考に、ヘビ族のIID型PLA₂遺伝子を特異的に增幅することができるpGIID-1とpGIID-2プライマー、ヘビ族のIIIF型PLA₂遺伝子とその5'上流に存在すると予測されるIIA型PLA₂遺伝子を特異的に増幅することができるCHO5とSPIIF-1プライマー、ヘビ族のIIIF型PLA₂遺伝子とその3'上流に存在すると予測されるMULI遺伝子を特異的に増幅することができるSPIIF-2とMul1-1プライマーをそれぞれ用いて、ホンハブ、トカラハブ、サキシマハブ、ヒメハブのそれぞれのゲノムに対してゲノミックPCRを行った。その結果、IID型PLA₂遺伝子を特異的に増幅することができるpGIID-1とpGIID-2プライマーを用いたPCRではホンハブとトカラハブで約1.5kbpと約0.9kbpのDNA断片が増幅された(Figure 43)。これらの塩基配列を解読したところ、ホンハブの当該断片の塩基配列は以前に池田らによって報告されているPfPLA8とPfPLA7のそれぞれの5'上流領域に一致する配列であることが見出された(Chijiwa et al., 2012; Ikeda, 2011)。そこで、PfPLA8とPfPLA7の両遺伝子の5'上流領域の塩基配列を詳細に調べたところ、哺乳類のIID型PLA₂に高い相異性を示す2つの新規PLA₂遺伝子がPfPLA7を挟み込むようにゲノム上で向き合い存在していることが明らかとなった。ただし、IID型PLA₂遺伝子の転写産物
がヘビ族で未だ見つかっておらず、キングコブラとビルマニシキヘビの全ゲノム情報でもアーテーションされていなかったため、既知哺乳類 IID 型 PLA2 のアミノ酸配列情報にエクソンインタロンジャンクションと ORF を予測し、アミノ酸配列を推定した。その結果、Pf PLA8 の 5′上流領域に存在する塩基配列は新規 PLA2 遺伝子の ORF が保存されているのに対して、Pf PLA7 の 5′上流領域に存在する塩基配列は新規 PLA2 遺伝子の ORF が一部欠失し、いくつかフレームシフトを含んでいるいわゆる偽遺伝子であることも分かった。この 2 つの予測された推定アミノ酸配列の成熟タンパク質配列に基づいた系統解析から、ホンハブの 2 つの新規 PLA2 は確かに IID 型 PLA2 のクレードに含まれるが、ヘビ類と哺乳類はさらに細かく別々のクレードを形成することが明らかとなった (Figure 44, 45)。そこで、ホンハブの Pf PLA8 の 5′上流領域に存在する新規 PLA2 遺伝子を PfIIDPLA2、Pf PLA7 の 5′上流領域に存在する新規 PLA2 遺伝子を PfIIDPLA2 (ϕ) とそれぞれ名付けた。興味深いことに、ホンハブ PfIIDPLA2 と PfIIDPLA2 (ϕ) に含まれるシステイン残基は 3 等所で他のヘビ族 IID 型 PLA2 や哺乳類 IID 型 PLA2 と異なる位置に存在し、タンパク質のフォールディングが異なることが考えられた (Figure 44)。また、ゲノミック PCR の増幅産物の分子量から推測するとトカラハブにも完全長をコードしている PfIIDPLA2 に高い相続性を示す遺伝子と偽遺伝子をコードしている PfIIDPLA2 (ϕ) に高い相続性を示す遺伝子が存在すると考えられ、サキシマハブでは 2 つの IID 型 PLA2 遺伝子の間に挟まれる領域が 5~6 kbp に渡って欠失している可能性と考えられた (Figure 43)。一方でヒメハブでは IID 型 PLA2 遺伝子由来の増幅産物が一切確認できず、今回設計したプライマー増幅領域である第 1 イントロンから第 4 エクソンまでの領域が大規模に欠失している可能性が示唆された (Figure 43)。第 4 項で詳細は後述するが、ヘビ族における比較ゲノム解析の結果から、このヘビ族における IID 型 PLA2 遺伝子のゲノム構造は非常に不安定であり、ビルマニシキヘビでは第 3 イントロンから第 4 エクソン及び 3′ UTR を完全に欠失しており、ヨーロッパクサリヘビ (Vipera berus berus) のサズンスペックルドラトルスネーク (Crotalus mitchelli pyrrhus) のゲノムでも遺伝子コード領域の欠失が確認できた。ヘビ族 IID 型 PLA2 遺伝子は種によっては遺伝子コード領域が欠失しており、また塩化産物がこれまでに見つかっていないことからも、ヘビ族 IID 型 PLA2 は恒常的な機能には関与しておらず、非毒性分泌型 PLA2 遺伝子の名残としてゲノム上にコードされているだけに過ぎないのかもしれない。また、IID 型 PLA2 遺伝
子オーソロッグ間での K_{A}/K_{S} 値を codeml プログラムの site model で算定したが、正の選択を受けているという有意な結果を得ることはできなかった (Figure 46)。

ビルマニシキヘビ、キングコブラ、ヨーロッパクサリヘビのゲノム情報とのシンテニーを参考にして、日本南西諸島のヘビ族の IIA 型 PLA2 遺伝子とそれを 5' 上流に存在すると予測される IIA 型 PLA2 遺伝子を特異的に増幅することができる SPIIF-1 と CHO5 プライマーを用いたゲノミック PCR を行い、ホンハブ、トカラハブ、サキシマハブで約 6.5 kbp、ヒメハブで約 7 kbp の DNA 断片が増幅された (Figure 43)。ホンハブとヒメハブで獲得された塩基配列をそれぞれ解読したところ、ホンハブでは以前に池田らによって報告されている PfPLA8 (Ikeda, 2011) の 3'下流に、ヒメハブでは以前に信久らによって報告されている OoPLA2-ol (Nobuhisa et al., 1996) の 3'下流にそれぞれ哺乳類の IIF 型 PLA2 に高い相対性を示す新規 PLA2 遺伝子群が発見していることが分かった。これらホンハブとヒメハブの新規 PLA2 遺伝子の推定アミノ酸配列を、既知哺乳類 IIF 型 PLA2 と比較したところ、ヘビ族 IIF 型 PLA2 にはスチーム残基が 1 つだけ少なく、哺乳類 IIF 型 PLA2 特有の C 末端の延長配列が見られなかったが (Figure 44)，推定されたアミノ酸配列の成熟タンパク質配列に基づいた系統解析から、ホンハブとヒメハブの新規 PLA2 を含むヘビ族 IIF 型 PLA2 が哺乳類の IIF 型 PLA2 クレードに近接し、IIF 型 PLA2 クレードに分類されることを見出した (Figure 45)。そこで、ホンハブとヒメハブの新規 PLA2 遺伝子を PfIIFPLA2 と OoIIFPLA2 とそれぞれ名付けた。このクラリヘビ科ヘビ IIF 型 PLA2 遺伝子の転写産物は精査で確認することができたことから (data not shown)，哺乳類 IIF 型 PLA2 と同様に酵素活性は増大させるとの報告もあり (Murakami et al., 2002a)，その機能活性に関しては哺乳類 IIF 型 PLA2 とヘビ族 IIF 型 PLA2 の間で大きな差があるかもしれないと考えられるが (Masuda et al., 2004)，哺乳類 IIF 型 PLA2 特有の C 末端の延長配列は酵素活性を増大させるとの報告もあり (Murakami et al., 2002a)，その機能活性に関しては哺乳類 IIF 型 PLA2 とヘビ族 IIF 型 PLA2 の間で大きな差があるかもしれない。また、ヘビ族 IIF 型 PLA2 オーソロッグ遺伝子間での K_{A}/K_{S} 値を codeml プログラムの site model で算定したが、正の選択を受けているという有意な結果を得ることはできなかった (Figure 46)。

日本南西諸島のクサリヘビ科ヘビの IIA 型毒 PLA2 遺伝子の 3'下流に IIF 型 PLA2 遺伝子が存在することを見出したので (Figure 43)，さらに IIF 型 PLA2 遺伝子の 3'下流に続く分泌型 PLA2 遺伝子クラスターのクラスター境界領域を同定するために、ヘビ族の IIF 型 PLA2 遺伝子とその 3'下流に存在すると予測される MULI 遺伝子を特異的に増幅することができる SPIIF-2 と Mul1-I プライマーを
用いたゲノミック PCR を行い、ホンハブ、トカラハブ、サキシマハブ、ヒメハブで約 6 kbp の DNA 断片を增幅した。ホンハブとヒメハブの増幅 DNA 断片の 5' と 3' 末端の一部及び IIF 型 PLA2 遺伝子内部の塩基配列を解読したところ、前述した PfIIFPLA2 と OoIIFPLA2 の塩基配列と一致し、さらに予測していたように MULI 遺伝子の第 4 エクソンに相当する領域にそれぞれ一致していることを確認した (Figure 43)。加えて、九州大学 生体防御医学研究所 トランスオミクス医学研究センターの服巻保幸先生、柴田弘紀先生よりご提供して頂いた Illumina 社の MiSeq と Roche 社 GS FLX の次世代シークエンサーでリードされたホンハブの全ゲノムショットガンシークエンスデータを解析すると、22,152 bp からなる scaffold 配列：scaffold9571_cov47 が IIF 型 PLA2 遺伝子の第 2 イントロンから PfPLA 1 遺伝子の第 4 エクソンまでをコードしていることが明らかとなり、さらには PfIIFPLA2, PfIIDPLA2, PfPLA 8, PfPLA 7, PfIIDPLA2 (φ), PfPLA 6, PfPLA 1 がタンデムに連なり並んでいることを確認した。即ち、クサリヘビ科ヘビでも MUL1, IIF 型 PLA2, IID 型 PLA2, IIA 型 PLA2, IIE 型 PLA2, OTUD3 をそれぞれコードする遺伝子がタンデムに並んだ構造が保存されていることが示唆され、この領域におけるゲノムシンテニーはホンハブ個体間でも保存されていることが示唆された。

5-1-2. ホンハブとヒメハブの IIA 型 PLA2 遺伝子及びそのクラスター領域のゲノム構造

私はこれまでにホンハブにおける IIA 型の毒 PLA2 遺伝子がハープロアイドあたり 16~32 コピー含まれること (Nakashima et al., 1993)、それらがマイクロ染色体の短腕の 2 つの遺伝子座でタンデムに並んでいることを明らかにしてきた (Figure 11) (Chijiwa et al., 2012; Ikeda, 2011; Ikeda et al., 2010)。一方、ヒメハブにおける IIA 型の毒 PLA2 遺伝子はファージを用いたゲノムライブラリのスクリーニングから 3 つが見出され、サランプリット解析からその 3 つが 1 つの染色体上にタンデムに連なっていることが示唆されている (Figure 17) (Nobuhisa et al., 1996)。そこでクサリヘビ科ヘビ IIA 型毒 PLA2 遺伝子のクラスター形成過程を考察するために、私はコスミドを用いてヒメハブゲノムライブラリを改めて作成し、IIA 型毒 PLA2 遺伝子を含む約 32 kbp のゲノム断片を含むクローン:Ovo-1 の塩基配列を解析した。その結果、IIA 型 PLA2 をコードする OoPLA2-o2 と OoPLA2-o3 遺伝子が並んでいることを見出し、その構造が信頼らによって予
測されてきた構造と一致することを確認した (Figure 47) (Nobuhisa et al., 1996)。また、これら 2 つの IIA 型 PLA₂ 遺伝子の 3’下流には OTUD3, Peptidylprolyl Isomerase H (PPiH), Y Box Binding Protein 1 (YBX1) をコードしている遺伝子が並んでいることも見出した。前述のように IIA 型 PLₐ₂ 遺伝子、IIE 型 PLA₂ 遺伝子、そして OTUD3 遺伝子がタンデムに並ぶゲノム構造はホンハブやキングコブラ、哺乳類でも保存されており (Figure 28, 29) (Yamaguchi et al., 2014)，このクローンはクサリヘビ科ヘビの分泌型 PLA₂ 遺伝子クラスターが載ったゲノムドメインの境界及び末端領域とさらにその外縁領域を含んでいることが分かった (Figure 47)。信久らによれば、2 つのヒメハブ IIA 型 PLA₂ 遺伝子: OoPLA₂-o2 と OoPLA₂-o3 の 5’上流には OoPLA₂-o1 遺伝子が 1 つ存在するだけと予測されており、OoPLA₂-o1 遺伝子はΔ前項でも示したように SPIIF-1 と CHO5 プライマーを用いたゲノミック PCR によって、OoIIFPLA₂ 遺伝子と共に 1 つのゲノム断片として獲得された。このゲノミック PCR によって獲得されたゲノム断片とゲノムライブラリーから獲得された Ovo-1 が、同一染色体上に存在しているかを検証するために、SK8 と CHO3 プライマーを用いたゲノミック PCR をヒメハブに対してさらに行い、3,539 bp の DNA 断片を獲得した。その 3,539 bp の塩基配列は先のゲノミック PCR で獲得された DNA 断片と 1,691 bp, Ovo-1 と 1,636 bp に渡って完全に一致したことをそれぞれ確認した。以上、ゲノミック PCR で獲得された 2 つの DNA 断片と Ovo-1 は塩基配列の一致性と信久らによる予測の 2 つの点から、これら DNA 断片は同一染色体上に位置し、連なっていることが示唆された。そこで、ホンハブとヒメハブの IIA 型 PLA₂ 遺伝子クラスター領域における塩基配列の相同性を確認した。すると、ヒメハブの IIA 型 PLA₂ 遺伝子クラスターは、ホンハブの IIA 型 PLA₂ 遺伝子クラスター内の PfPLA 8 遺伝子領域に高い相同性を示す領域、PfPLA 6 遺伝子領域に高い相同性を示す領域、PfPLA 2 遺伝子領域に高い相同性を示す領域の 3 つの領域から構成されるゲノム構造を持つことが示され、ヒメハブの OoPLA₂-o1 は PfPLA 8 に、OoPLA₂-o2 は PfPLA 6 に、OoPLA₂-o3 は PfPLA 2 に、それぞれ相同性を示すことが示唆された (Figure 48)。さらに、IIA 型 PLA₂ 遺伝子クラスターのゲノム配列情報が部分的に明らかとなっているサザンスベックルドラトルスネークの IIA 型 PLA₂ 遺伝子クラスターに対しても同様にホンハブの IIA 型 PLA₂ 遺伝子クラスターとの相同性の確認を行った。サザンスベックルドラトルスネークの IIA 型 PLA₂ 遺伝子クラスターは、ホンハブの IIA 型 PLA₂ 遺伝子クラスター内の PfPLA 7 遺伝子領域に高い相
同性を示す領域，*PfPLA* 6 遺伝子領域に高い相対性を示す領域，*PjPLA* 2 遺伝子領域に高い相対性を示す領域，*PfPLA* 2 遺伝子の 3'下流に高い相対性を示す領域の計 4 つの領域から構成されるゲノム構造を持つことが示され，*PfPLA* 7, *PfPLA* 6, *PjPLA* 2 のそれぞれに相対性を示す PLA2 遺伝子の存在が示唆された（*Figure 48*）。そこで，ホンハブ，ヒメハブ，サザンスペックルドラトルスネークの IIA 型 PLA2 遺伝子クラスターで見つかった PLA2 をコードする遺伝子から推定されたアミノ酸配列をアライメントし，Expert Protein Analysis System (ExPASy) の Compute pI/Mw tool による成熟タンパク質の pI 値及び分子量を推定（*Figure 49*），さらに成熟タンパク質に基づく系統解析を行ったところ，これら 3 種のマムシ属ヘビから見つかっている IIA 型 PLA2 は独立する 6 つのサブグループを形成することが示され，[Asp49]型の PLA2 は祖先型（Ancestral type），酸性[Asp49]型（Acidic[Asp49] type），中性[Asp49]型（Neutral[Asp49] type），塩基性[Asp49]型（Basic[Asp49] type），強塩基性[Asp49]型（Highly basic[Asp49] type）の 5 つのサブグループを形成し，[Lys49]型の PLA2 は独立した[Lys49]型 ([Lys49] type）の 1 つのサブグループを形成することが明らかとなった（*Figure 50*）。つまり，ゲノム構造の類似性，そこにコードされる PLA2 のアミノ酸配列が示す pI 値及び分子系統学的な分類により，①ホンハブの *PjPLA* 8 とヒメハブの *OoPLA2-01* がオーソロジー関係であること，②ホンハブの *PjPLA* 7 とサザンスペックルドラトルスネークの中性[Asp49]PLA2 遺伝子がオーソロジー関係であること，③ホンハブの *PjPLA* 6 とヒメハブの *OoPLA2-01*，サザンスペックルドラトルスネークの祖先型 PLA2 遺伝子がそれぞれオーソロジー関係であること，④ホンハブの *PjPLA* 2 とヒメハブの *OoPLA2-02*，サザンスペックルドラトルスネークの[Lys49]PLA2 遺伝子がそれぞれオーソロジー関係であること，を見出した。これまでホンハブの酸性 [Asp49]PLA2 はその転写及び翻訳産物が見出されていなかったことから，偽遺伝子化していると考えられてきたが（Ikeda, 2011; Ikeda et al., 2010），上田・中村らによって酸性[Asp49]PLA2 である *PfgPLA* 1b/2b がホンハブの幼鴞では発現していることが近年新たに示されており，ホンハブにおける酸性[Asp49]PLA2 は成長段階での時期特異的な発現をしていることが見出されている（unpublished）。また，系統解析では以前に千々岩らによって IIA 型ハブ毒 PLA2 遺伝子の祖先型遺伝子であると予測された A タイプ遺伝子構造を有する *PjPLA* 6 と *OoPLA2-02* （Chijiwa et al., 2012）が形成する祖先型 PLA2 クレードは他のサブグループが形成するいずれのクレードよりもその分散が小さいことが示された。それは即ち，
祖先型に分類される IIA 型の PLA₂は機能的制約が強く、種間で高く保存されていることを示しているのだろう。私は、このクサリヘビ科ヘビで見出された祖先型に分類される IIA 型の PLA₂が毒としての機能するのではなく、哺乳類の非毒性 IIA 型 PLA₂と同様に、生体の恒常性を維持するリン脂質代謝やシグナル伝達を司っているのではないかと考えた。そこで、PjPLA 6 遺伝子を特異的に増幅することができる MS5-1 と MS3-1 プライマーを用いた逆転写 PCR を行って発現組織を検証した。その結果、ホンハブの PjPLA 6 遺伝子転写産物は毒腺においても顕著に発現していたが、脳、心臓、肺、脾臓、精巢、卵巣の発現もわずかながら確認することができた (Figure 51)。このことからクサリヘビ科ヘビの祖先型 IIA 型 PLA₂は毒としての機能も有するが、その一方で毒腺以外の組織で発現し、生体の恒常性を維持するリン脂質代謝やシグナル伝達に関与していることが強く示唆された。ただし、ヒメハブの OoPLA₂-o2 遺伝子は第 3 エクソン内に存在する一塩基挿入によるフレームシフトにより仮遺伝子化していることから、このクサリヘビ科ヘビの祖先型 IIA 型 PLA₂の毒腺以外での機能とその生理活性については今後の検討課題としたい。

クサリヘビ科ヘビの IIA 型毒 PLA₂は多重遺伝子ファミリーを形成しているので、オーソログの選定が困難であり、クサリヘビ科ヘビの IIA 型毒 PLA₂を取り扱った研究報告のほとんどで、オーソロガスな関係性を十分に考慮せずパラログを含めた比較がこれまで行われてきた。今回新たに比較ゲノムの観点とタンパク質の構造及びその生理機能の観点を組み合わせることで、クサリヘビ科マムシ亜科ヘビの IIA 型 PLA₂で明確なオーソログ遺伝子の選定が可能となり、その比較が可能となった。そこでホンハブ、ヒメハブ及びサザンスベッククドラドルスネークの 3 種のマムシ亜科ヘビの祖先型 PLA₂、酸性[Asp₄⁹]PLA₂、[Lys₄⁹]PLA₂のオーソログ遺伝子間での Kₐ/Kₔ値を codeml プログラムの site model で算定した (Figure 52)。その結果、いずれも正の選択を受けたとする有意な値は得られなかったことから、これらオーソログ遺伝子は種間で保存され、中立的に進化していることが示された。ホンハブとヒメハブのそれぞれで、IIA 型 PLA₂のインパラログ (In-paralog) 間の Kₐ/Kₔ値は 1 を上回ることが報告されているが (Nakashima et al., 1993; Nobuhisa et al., 1996)，今回行ったオーソログ間における Kₐ/Kₔ値は 1 を下回った。それは祖先型、酸性[Asp₄⁹]型、[Lys₄⁹]型の PLA₂をコードする遺伝子がハブ属 (Protobothrops)，ヤマハブ属 (Ovophis)，ガラガラヘビ属 (Crotalus) の属分化以前に獲得・保存されてきたこと、少なくともこの
3つのPLA2をコードする遺伝子に関しては未分化以降には加速進化が生じていないことを示しており、クサリヘビ科ヘビのIIA型PLA2遺伝子における加速進化がマムシ亜科ヘビの未分化以前に生じた現象であることを想像させる。

現在、日本南西諸島に棲息するハブ属ヘビの偽遺伝子化していないIIA型PLA2は122もしくは121アミノ酸残基からなりエクソン部分のORFが高度に保存されているように考えられているが、アミノ酸アラインメント及びPAL2NALによる対応コドンの解析によると第4エクソンでの塩基挿入や欠失によるフレームシフトと組換えが生じていることが伺える解析結果を得た(Figure 49, 53)。特に、PjPLA1の第1エクソンから第4エクソン前半に存在するコーディング領域の核酸配列はPjPLA6の相当領域に93%と高い相似性を示すのに対して、第4エクソン後半に存在するコーディング領域の核酸配列は75%の相対性しか示さない。しかし、PjPLA2[PjBP-II]の第4エクソン後半に存在するコーディング領域の核酸配列に対しては94%と高い相似性を示す(Figure 53)。おそらくPjPLA1は祖先型PLA2であるPjPLA6遺伝子と[Lys49]PLA2であるPjPLA2遺伝子の重複とつづく組換えで派生した産物なのであろう。それはヒメハブとサザンスペックルドラトルスネークのIIA型PLA2遺伝子クラスターの構造解析で祖先型PLA2と[Lys49]PLA2をコードする遺伝子が隣同士タントムに連なっているゲノムの構造的特徴からも(Figure 47, 48)、PjPLA1が重複したPjPLA6とPjPLA2遺伝子の組換えで派生した産物であることを期待させる。PjPLA1のオーソロジ遺伝子はヤマハブ属のヒメハブとガラガラヘビ属のサザンスペックルドラトルスネークでは見出せないことから(Figure 47, 48)、少なくとも日本南西諸島周辺に存在するハブ属の共通祖先もしくはオシハブとトカラハブの共通祖先で形成された比較的新しい遺伝子構造産物であると考えられる。

5-1-3. クサリヘビ科ヘビのPLA2遺伝子クラスター領域に頻繁に散在するIIE型PLA2遺伝子に高い相関性を示す塩基配列

ホンハブのIIA型PLA2遺伝子クラスターにおける遺伝子間領域を詳細に調べたところ、IIE型PLA2遺伝子とその近傍配列に高い相関性を示す3種類の塩基配列が見出されることが分かった(Figure 54)。それぞれを、IIE型PLA2遺伝子の5′上流領域に高い相関性を示すAlpha、Alphaの3′下流の領域に高い相関性を示すBeta、IIE型PLA2遺伝子コード領域の第1イントロンから第3イントロンまでの領域に高い相関性を示すChaiと名付けた。特にIIE型PLA2遺伝子の第2
エクソンと第3エクソンを含むChai配列が、IIA型PLA₂遺伝子の3'下流に接続している構造は、既に報告されているIIA型PLA₂遺伝子の3'下流にIII型PLA₂がタンデムに連なる高等脊椎動物ゲノム共通の構造と照らし合わせると非常に興味深い（Figure 28, 29, 47）。PjPLA₆の3'下流で見出されるChai配列は最もIII型PLA₂遺伝子の構造の名残を残しており、それは当該遺伝子がIIA型PLA₂遺伝子の多重化以前より存在した祖先型であることに関連があるのではないかだろう。そして、ヒメハブ、サザンスペックルドラトルスネーク、ヨーロッパクサリヘビのIIA型PLA₂遺伝子クラスターでもAlpha, Beta, Chai配列が同様のパターンで見出されることから（Figure 48）、これらはクサリヘビ科ヘビの種分岐以前のゲノムイベントの名残であると言える。第5章1節で述べた不完全なⅢ型PLA₂をコードする2つアイソティグ：isotig03505とisotig19327、この散在するIII型PLA₂遺伝子同士の断片化配列から転写された産物ではないかと考えられる。

また、コードされるDNA鎖と塩基配列の向きの特徴からPjPLA₇とPjPLA₆の遺伝子間領域で見出したBeta配列はPjPLA₆に、Chai配列はPjPLA₇に関連付けられる。さらに、PjPLA₈とPjPLA₇はPjPLA₆, PjPLA₁, PjPLA₂, PjPLA₃, PjPLA₄, PjPLA₅, PjPLA₆がコードされているDNA鎖とは逆鎖にコードされていることを合わせて考えると、ちょうどこのBeta配列とChai配列の間にゲノム構造の不連続点すなわちクラスター境界があると考えられる（Figure 47, 54）。さらに、Chai配列をThe mfold Web ServerのDNA Folding Formツールを用いて解析したところ、2つの領域が強固なシステムループ構造を形成することが予測された。この2つの領域はⅢ型PLA₂遺伝子の第1イントロンと第2イントロンにそれぞれ存在していた（Figure 55）。ゲノムDNA内外に潜むシステムループ形成配列は十字架（Cruciform）構造を形成し、しばしばDSB（Double Strand Break）による染色体乗換え（Chromosomal crossover）と再編（rearrangement）時の足場として働くことが報告されている（Bi et al., 2003; Inagaki et al., 2013; Lemoine et al., 2005; Mukherjee and Storici, 2012）。一方で、IIA型PLA₂遺伝子がホンヘブほど多重化をしていないヒメハブでは、祖先型PLA₂遺伝子：OoPLA₂-α2，の3'下流にChai配列が見出せない。これらの観察結果は、Chai配列が染色体乗換えや再編を介して、クサリヘビ科ヘビIIA型PLA₂遺伝子の多重化に関わった可能性を示しているのではないかだろうか（Figure 47, 48）。池田らはPeRTFによる5'Transductionが毒PLA₂遺伝子多重化に関与したのではないかと提案しているが
5-1-4. ホンハブとヒメハブの PLA₂ 遺伝子クラスター領域のゲノム構造の比較から分かったヒメハブ PLA₂ 遺伝子クラスター領域での大規模な欠失

ホンハブとヒメハブの PLA₂ 遺伝子クラスターの塩基配列を比較したところ、ホンハブ PLA₂ 遺伝子クラスターに存在する 2 つの IID 型 PLA₂ 遺伝子に相同な遺伝子をヒメハブのクラスター中に見出すことができなかった。IIID 型 PLA₂ 遺伝子を特異的に增幅することができるプライマーを用いたゲノミック PCR でもヒメハブでは增幅産物を一切確認することができなかったから、ヒメハブゲノムには完全長をコードする IID 型 PLA₂ 遺伝子が無いと考えられる (Figure 43, 47)。そこで、ヒメハブゲノムで IID 型 PLA₂ 遺伝子が存在すると推測される領域の塩基配列を詳細に調べたところ、ホンハブゲノムの PfiIIDPLA₂ の第 1 イントロン後半部から PfiIIDPLA₂ (ψ) の第 1 イントロン後半部までの領域に相当する塩基配列が、ヒメハブゲノムでは抜け落ちていることが分かった (Figure 47)。その名残として、ホンハブの PfiIIDPLA₂ の第 1 エクソンから第 1 イントロン前半部までの 532 bp の塩基配列と、PfiIIDPLA₂ (ψ) の第 1 エクソンから第 1 イントロン前半部までの 653 bp の塩基配列と、それぞれ 94% と 93% 一致する 520 bp と 628 bp の 2 つの塩基配列をヒメハブゲノムから見出した。即ち、この 2 つの塩基配列は過去ヒメハブゲノムに存在していた OoolIDPLA₂ と OoolIIDPLA₂ (ψ) それぞれの第 1 エクソンから第 1 イントロン前半部に相当する断片であると考えられる。さらに、ヒメハブで欠失していると考えられる領域に相当するホンハブゲノム領域を詳細に解析したところ、向かい合う 2 つの IID 型 PLA₂ 遺伝子が同一 DNA 鎖上で相補的な塩基対結合をするで約 7.9 kbp に渡る巨大なステムループ構造を形成することが予測された (Figure 56)。このステムループ構造を形成すると予測された塩基配列をホンハブゲノムから除き、その前後の塩基配列 712 bp とヒメハブゲノムでそこに相当する領域の塩基配列 687 bp をアラインメントしたところ、それらの配列は 91% の一致を示した (Figure 56)。また、

(Ikeda, 2011; Ikeda et al., 2010), 多くの生物種で見つかっている LINE のほとんどが 5' truncated な構造を有し、5' Transduction が非常に稀な現象であると (Damert et al., 2009; Hulme et al., 2009; Symer et al., 2002; Szak et al., 2002), 細 PLA₂ 遺伝子の重複がゲノム上で無作為的に生じているのではなく、特定の遺伝子座に集積していることからも、細 PLA₂ 遺伝子の多重化が LINE 配列を介して生じたと断言するには、検証すべき課題が未だ残っている。
このステムシップ構造を形成すると予測された塩基配列の内には、IIA 型の中性 [Asp^{49}]PLA₂ である Pf/PLA2 をコードする PfPLA が含まれていた。これまでの解析からヒメハブでは中性[Asp^{49}]PLA₂ をコードする遺伝子が欠失していることが分かっているが、Figure 47, 48, 50、以上の新たな知見を合わせて考えると、かつてヒメハブゲノムでも向かい合う 2 つの IID 型 PLA₂ 遺伝子とその 2 つの遺伝子に挟まれた中性[Asp^{49}]PLA₂ 遺伝子からなる構造が存在したが、それがステムシップ構造を形成してゲノム上から欠失したと予測される（Figure 57）。以上の観察と 5 章 1 項 2 項の観察を合わせると、少なくともハブ属、ヤマハブ属、ガラガラヘビ属の属分化以前の共通祖先ヘビのゲノムには酸性 [Asp^{49}]PLA₂、中性[Asp^{49}]PLA₂、祖先型 PLA₂、[Lys^{49}]PLA₂ をコードする 4 つの遺伝子がこの順番でゲノム上にタンデムな状態で並び、クラスターを形成していたと考えられる。

また、Pf\IIDPLA₂ の第 1 イントロンに挿入された酸性 [Asp^{49}]PLA₂ である Pf/pgPLA 1b をコードする PfPLA 8 の 5'・3'のすぐ外側には 2 つの引きにほぼ一致する短い塩基配列 5'-ATG TAA TTC TGG GAA CTG AAG TCC ACA AGT CT -3'・ATG TAA TTC TGG GAA CTG AAG CCC ACA AGT CT -3'が見出された。このような短い配列が同一 DNA 鎖上に 2 つ並んでい る構造としてはトランススポンゾンなどの転移因子が宿主 DNA 鎖に挿入した際に生じる TSD (Target site duplication) が知られている (Kazazian, 2004; Kojima, 2010; Naville et al., 2014; Szak et al., 2002)。即ち、PfPLA 8 は Pf\IIDPLA₂ 遺伝子が形成された後に、その第 1 イントロンに挿入されたことになる。ところが、PfPLA 8 の遺伝子周辺配列にはトランススポンゾンなどの転移因子由来の塩基配列やその痕跡も、Chai 配列なども一目見て発見することができなかった。従って、一体、PfPLA 8 がどうやって現在の遺伝子座に現れたかはとても興味深い。

5-1-5. PLA₂ 遺伝子クラスター領域のゲノム構造の種間・種内比較から推定される分子進化過程

哺乳類、鳥類、ヘビ類の分泌型 PLA₂ 遺伝子クラスターがシンテニーを示すことから、その塩基配列を詳細に比較することでクサリヘビ科ヘビの IIA 型 PLA₂ 遺伝子がいつ頃までどのように多重化したのかを考察した。まず、IIC 型 PLA₂ 遺伝子は哺乳類特異的であること、IFF, IID, IIA, IIE 型の PLA₂ 遺伝子は哺乳類とヘビ類ゲノムに共通して含まれることを確認した（Figure 58）。一方、鳥類であ
ニワトリのゲノムでは IIA, V, IIE 型の PLAs 遺伝子がアノテーションされているが、哺乳類やヘビ類とのシンテニーと食い違う部分が見出されることからニワトリゲノムプロジェクトのデータベースのアノテーションの信頼度は高くないと考え、比較ゲノム学的手法による考察を掘り下げたことにした。続いて、各分泌型 PLAs の系統的な距離を推測するために、成熟タンパク質に基づく系統解析を行った。その結果、今回ヘビ類で新たに見出された IIF, IID, IIE 型の PLAs は推測していた哺乳類 IIF, IID, IIE 型の各クレードに含まれる (Figure 59)。また、ヘビ類の IIA 型と PLAs は哺乳類 IIA 型 PLAs のブランチから大きく離れて独自のクレードを形成し、[Asp⁴⁹]型、[Lys⁴⁹]型及び祖先型の 3 つのサブクレードを形成することが分かった。また、ニワトリの IIA 型 PLAs は IIC 型 PLAs のクレードに近接し、系統的には明らかに IIC 型 PLAs であると判定された (Figure 59)。また、Figure 59 ではニワトリの V 型 PLAs は哺乳類 V 型 PLAs のクレードに近接して見えるが、ノードとそこからの距離を検討すると IID 型 PLAs のクレードに近接させることもトポロジーとしては可能であることが見て取れる (Figure 60)。即ち、先ほど予測したニワトリ PLAs 遺伝子に対するアノテーションの不確かな系統解析によっても示され、今回対象をもとにニワトリの IIA 型と V 型 PLAs をそれぞれ IIC 型と IID 型 PLAs と置き換えれば、分泌型 PLAs 遺伝子クラスター領域のシンテニーは哺乳類、鳥類及びヘビ類で保存されていることになる。全ゲノムシークエンスを目的としたゲノムプロジェクトでは膨大かつショートリードのデータを幾重にもアセンブルして構成されるゲノム Contig や Scaffold の塩基配列に対して RNA-seq などのデータをそこにマッピングすることで遺伝子領域の同定作業が行われる。RNA-seq のデータ量も膨大であるため、現在では既知核酸及びタンパク質データベースに対する BLAST 検索と GO (Gene Ontology) 解析による遺伝子の機能を階層化して分類・整理して遺伝子の同定とアノテーションが行われているが、予想以上に多くの遺伝子のファミリーやスーパーファミリーが見出されている現在、選択設定や照会するデータベースの生物種設定が不十分であるとミスアノテーションが生じやすい。近年、ゲノム比較を行う研究者の間では鳥類を含む主亜類のゲノムはヘビ類を含む双竜亜に比べるとその構造が極めて変化に富んでおり、哺乳類ゲノムとの比較を行うには余り適していないとの話題がある。特に、ニワトリのゲノムサイズは約 1.0 Gbp であり (Hillier et al., 2004)、ヘビ類のゲノムサイズである約 1.3 〜1.5 Gbp (Castoe et al., 2013; Ullate-Agote et al., 2014; Vonk et al., 2013) よりも
遙かにコンパクトなサイズを有している。MUL1 もしくは UBXN10 と OTUD3 遺伝子に挟まれる分泌型 PLA2 遺伝子クラスター領域の長さもヒルマニシキヘビとキングコブラでは約 19~20 kbp であるのに対して、ニワトリでは 12 kbp とコンパクトであることも分かった (Figure 58)。さらに、キンカチョウ (Warren et al., 2010), セキセイインコ (Jarvis et al., 2014), シチメンチョウ (Dalloul et al., 2010) のゲノム情報も調べたが、そこには哺乳類・ヘビ類の IIA, IIF 型 PLA2 に相当する遺伝子は一切存在していなかった (data not shown)。それら遺伝子がなぜ鳥類特異的に見出せないのかについては今後、鳥類の比較ゲノム解析をより詳細に行うことで解決されるだろう。今回、私が行ったような比較ゲノム学的手法と分子系統学的手法を組み合わせたような解析の重要度は今後ますます増えていくものと思われる。

一般に種の異なる生物種のゲノム間でシンテニーが見出されるということは、その生物種のゲノム構造が共通祖先のゲノムの同一領域に由来することを示している。従って、単純なシンテニー領域の比較からそこに存在する遺伝子が獲得された共通祖先にまで遡ることができると、IIIC, IIF, IID, IIA, IIE 型の PLA2 をコードする遺伝子は哺乳類、鳥類、ヘビ類の共通祖先が既に有していたと示唆される。さらに V 型 PLA2 は哺乳類系統が分岐して獲得された哺乳類独自の PLA2 であると考えられ、IID 型 PLA2 との系統的な距離から、それは IID 型 PLA2 のコピーが原形となり形成されたと推測できる。この考えは予測でしかないがホンハブゲノムで見出した PfIIDPLA2 (ψ) のような逆位を生じた IID 型 PLA2 遺伝子が V 型 PLA2 へと派生したのではないか。ここで化石記録から分かっている生物の種分化を考慮すると (Benton et al., 2009, 2015; Donoghue and Benton, 2007; Head, 2015), IIC, IIF, IID, IIA, IIE 型の PLA2 遺伝子は哺乳類、鳥類、爬虫類が分岐する以前の石炭紀後期 (3 億 3,290 万年~3 億 1,800 万年前) には、それらの共通祖先である有羊膜類 (Amniotes) で獲得されていたと考えられる。さらにそれら PLA2 遺伝子は UBXN10 と OTUD3 をコードする両遺伝子に挟まれるように存在していたと考えられ、その後有羊膜類から分岐した哺乳類では逆位を生じた IID 型 PLA2 遺伝子のコピー産物が原形となり哺乳類系統独自の V 型 PLA2 をコードする遺伝子が形成されたと推定できる。さらに、鳥類系統のゲノムでは哺乳類・ヘビ類の IIA, IIF 型 PLA2 に相当する遺伝子が一切存在していなかったことから、ベルム紀後期から三畳紀初期 (2 億 6,020 万年~2 億 4,710 万年前) にかけて分岐した鳥類と
ワニ類の共通祖先である主竜類（Archosaurs）、特に鳥類（Aves）、ではIIF型PLA2と本来のIIA型PLA2をコードする遺伝子の欠失が生じたと考えられる。さらに、キングコブラとピルマニシキヘビのドラフトゲノムデータの解析結果、及びクサリヘビ科ヘビ分型PLA2遺伝子クラスター領域の解析結果から、IIF型PLA2遺伝子の3'下流のMUL1遺伝子、VWA5B1及びUBXN10遺伝子がこの順に並んでいることを見出した（Figure 61）。即ち、この領域のゲノム断片が爬虫類（Reptilias）もしくは有鱗類（Squamates）が分岐した後に逆位を起こしたと考えられる。その逆位イベントが生じた際にIIC型PLA2遺伝子が喪失したと考えられる（Figure 61）。この逆位イベントによる分型PLA2遺伝子クラスターの周辺に存在すると考えられているLCR（Locus control region）やCTCF（CCCTC binding factor）による遺伝子発現制御に関与する障壁としてゲノムの機能的な構造体の変化がヘビ類の分型PLA2遺伝子クラスターに及ぼした影響を今後考察することは大変興味深く、分岐形態がおそらく常染色体に存在した分泌型PLA2遺伝子クラスターがマイクロ染色体に転座した機構とクサリヘビ科ヘビではIIA型PLA2遺伝子が多重化と加速進化を受けた機構に関連性があるのか興味深い。

また、ナミヘビ科毒蛇であるオオブタハナスヘビとブームスラングヘビでは異なる配列をもつ複数のIIIE型PLA2遺伝子転写産物が見つかっており、ナミヘビ科毒蛇ではIIIE型PLA2遺伝子が多重化していることが示唆されている（Fry et al., 2012）。ウシではIID型PLA2遺伝子が分泌型PLA2遺伝子クラスター内で多重化していることが報告されている（Golik et al., 2006）。アナウサギゲノムデータを解析したところ、IIA型PLA2遺伝子が分泌型PLA2遺伝子クラスター内で多重化していることも見出した（data not shown）。これまでクサリヘビ科ヘビのIIA型PLA2遺伝子の多重化は特異なケースであると考えられてきたが、分泌型PLA2遺伝子の多重化は種特異的ではあるが普遍的な現象であるかもしれない。今後さらに多様なゲノム配列の比較解析によって、その分子機構や機能配列を一層明らかにできると考えている。

さらに、私はクサリヘビ科ヘビのIIA型PLA2遺伝子がどのぐらいの年代に重複を起こしたのかを調べるために、化石記録とミトコンドリアの16S rRNA、12S rRNA、ND4（NADH dehydrogenase, subunit 4）、CYTB（Cytochrome b）をコードする遺伝子の配列情報に基づいて、クサリヘビ科ヘビの分岐年代を推定した。これまでハブ属及びヤマハブ属ヘビの日本南西諸島への渡来時期及びその経路は、
岩磐や断層などの地質学的な研究手法から主に鮮新世末から更新世初期の約200～100万年前に大陸から台湾及び日本南西諸島を繋ぐ第四紀陸橋を渡り北上してきたとされてきた（更新世陸橋仮説）（Figure 62）（Kimura, 2000, 1996）。しかし，近年の日本南西諸島に生息する様々な生物集団と大陸に生息する集団の分子遺伝学的・系統学的な調査から，両者の隔離期間は約1,800～250万年とする報告もあり（Honda et al., 2008; Matsui et al., 2005; Ota, 2012）。加えて，寒冷期に寒さに耐性の無いハブ属及びヤマハブ属ヘビが北上するという矛盾が指摘されている。そこで，16SrRNA, 12SrRNA, ND4, CYTBをコードする遺伝子の配列情報に基づく系統解析をRAxMLプログラムで実施し，系統間の分岐関係を推定し，分岐のノードに今回は8つの化石記録に基づく制約を施した（Figure 63）（Benton et al., 2015; Head, 2015; Holman and Tanimoto, 2004; Parmley and Holman, 2007; Rage et al., 2008; Sanders et al., 2010）。その際，最近の地質調査により，小宝島を含む南部トカラ列島は85万年前までに奄美大島から分離したことが示されたことから（Osozawa et al., 2012），トカラハブと奄美大島に棲息するホンハブの分岐を考慮する上で，海溝形成と島嶼分離を制約として加えたデータセットも別に準備した。下限制約に関しては事前にエクセルで97.5%分位点の計算とコーシー分布曲線の作成を行い（Figure 63）（Inoue et al., 2010），作成したコーシー分布曲線の分散を確認した上でそれぞれ適切だと考えられるコーシー分布と共に制約を施し，memctreeによる分岐年代推定を実施した（Figure 64, 65, Table 3, 4）。今回，海溝形成と島嶼分離の制約を施さない場合（Figure 64, Table 3）と，施した場合（Figure 65, Table 4）の2つのデータセットで解析を行ったが，そのどちらの結果からも，中琉球に棲息するホンハブとトカラハブの共通祖先が南琉球及び中国大陸に棲息する大陸系種ハブ（サキシマハブ，タイワンハブ，マオランハブ（Protobothrops maolanensis））の祖先種より分岐した時期は約1,190万年前であることが推定され，この種分化と分岐年代に関してはHundsdörferら，MalhotraとThorpeら，Wüsterらの分子系統解析の結果とも一致した（Table 5）（Hundsdörfer et al., 2011; Liu et al., 2012; Malhotra and Thorpe, 2000, 2004; Wüster et al., 2008）。また同じく，中琉球に棲息するヒメハブと揚子江以南に棲息するキクチハブ（Trimeresurus gracilis）が分岐した年代が約1,140万年前と推定されたことから，その年代，恐らく約1,500～800万年頃前に地理的隔離イベントが生じ，現在の中琉球に棲息するホンハブとトカラハブ，ヒメハブは中新世中期から後期にかけて大陸系種のヘビから分岐したことを伺わせる。しかしながら，今回の分子遺
伝学的・系統学的な手法を用いて推定された種分化年代と地質学的な調査観察により報告されている日本南西諸島の原型となった付加体（海洋プレートが海溝で大陸プレートの下に沈み込む際に、海洋プレートの上の堆積物がはぎ取られ、陸側に付加したもの）の形成・拡大の年代（200万年〜150万年前）（Kimura, 2000, 1996; Kizaki and Oshiro, 1980, 1977）及び台湾の形成年代（約500万年前）（Osozawa et al., 2012; Sibuet and Hsu, 2004）の間には大きな聞きがあり、更新世陸橋仮説で示されたハブ属・ヤマハブ属ヘビの渡来経路ではこれらヘビで観察された遺伝的距離を説明できない。そこで、当時の中国大陸に存在したと考えられる古黃河と古揚子江による地理的な隔離が、現在の中琉球と南琉球それぞれで見られる生物を反映しているとする服部、太田らの報告、服部によって予測された付加体の移動と日本南西諸島の形成の報告（Figure 66）（Hattori, 2014; Ota, 2012）、これまで行われた日本南西諸島形成に関する調査報告、加えて、今回の推定されたヘビの種分化年代に基づいて、日本南西諸島のハブ属・ヤマハブ属ヘビの日本南西諸島への渡来時期及びその経路を新たに推測した。①地球の気温が次第に低下し始めた1500万年前頃から（Zachos, 2001）、ユーラシア大陸の東部に棲息していた多くの生物は暖流の影響で比較的温暖であった中国大陸沿岸部を目指して南下を始めた（Hattori, 2014; Ota, 2012）。②約1500~800万年前に古黄河と古揚子江に挟まれた領域に達し、生息していた種がホンハブとトカラハブの祖先種とヒメハブであり、古揚子江以南の沿岸部へ達して生息していた種が大翼系種ハブ（サキシマハブ、タイワンハブ、マオランハブ）の祖先種とキクチハブであった。③約500万年前に台湾が形成され始めた（Osozawa et al., 2012; Sibuet and Hsu, 2004）。④200~150万年前に、フィリピン海プレートがユーラシアプレートの下に沈み込む際に形成される付加体が徐々に拡大し、現在の日本南西諸島の原型が中国大陸沿岸近くに形成された（Figure 66）（Hattori, 2014; Ota, 2012）。⑤古黄河と古揚子江に挟まれた領域に棲息していたホンハブとトカラハブの祖先種とヒメハブがより温暖な気候を求め、陸地となった中琉球（沖縄諸島・奄美群島）の付加体に達した。サキシマハブとタイワンハブの祖先種も台湾を経由し、台湾と南琉球（八重山列島）の付加体に達した。⑥約150万年前から沖縄トラフが形成・拡張を始め、中国大陸と日本南西諸島の間に黒潮が流入し、日本南西諸島の地形的な隔離が次第に始まった。⑦約117万年前に奄美大島のホンハブとトカラハブが種分化を始め、85万年前には完全に奄美大島と南部トカラ列島が地理的に分離した（Osozawa et al., 2012）。以上の説ではこれまでに指摘されて
いた中国大陸と日本南西諸島に棲息する生物種の遺伝的距離と地形学的な調査による矛盾を解決することが可能であり、現在の中琉球と南琉球に棲息する生物種が古揚子江によって地理的に隔離されていたということはクワガタムシ科の遺伝的距離の調査結果からも支持されている (Hosoya and Araya, 2005)。また、今回、私は2013年にZhangらによって報告されているタイワンハブのミトコンドリアDNA配列情報 (GenBank: KC438281.1) を系統解析に使用したが、このタイワンハブの採取地は中国南西部であり、台湾に棲息するタイワンハブとは異なる分岐を示すことが考えられる (Zhang et al., 2013)。2012年にLiuらが報告しているマオランハブの系統解析では今回、私が示した結果と同様に、先にタイワンハブが分岐し、その後でマオランハブとサキシマハブが分岐している様子が示されているが、Liuらはベトナム産と台湾産のタイワンハブを1つのデータセットとして用いたため、枝岐の誘引が生じている可能性が考えられた (Liu et al., 2012)。そこで、2015年にChenらによって新たに報告された台湾産のタイワンハブのミトコンドリアDNA配列情報 (GenBank: KT447436.1) を用い、さらに枝岐の誘引が生じないように他地域で採取された同種の配列情報を除き、最尤法による系統解析を実施した。すると、マオランハブが先に分岐し、その後でタイワンハブとサキシマハブが分岐している様子が確認された (data not shown)。ヘビの採取地とその遺伝的距離を考慮することでヘブ属・ヤマハブ属ヘビの渡来時期とその経路がより詳細に明らかになると考えられるので、今後の検討課題としていきたい。

また、私はこの年代推定に使用したいくつかのヘビがどういった種類のIIA型PLA2を有するのか系統解析で検証した (Table 6)。その結果、クサリヘビ亜科のIIA型PLA2はマムシ亜科のIIA型PLA2との相違が低く系統分類が困難であったが、コプラバイパー亜科であるコプラバイパー (Azemiopsis feae) のIIA型PLA2は酸性[Asp49]PLA2と祖先型PLA2のクレードに分布すること明らかとなり、先の分岐年代推定に従うと少なくとも2,719万年前頃には酸性[Asp49]PLA2がコプラバイパー亜科及びマムシ亜科系統の共通祖先で既に形成され、存在していたことが示された (Figure 63, 65, Table 4)。興味深い報告として、キクチハブの粗毒からはこれまでに中性、塩基性、強塩基性の[Asp49]PLA2は見つかっておらず、それらをコードする転写産物も一切見出されていない (Tsai et al., 2012)。ヒメハブとキクチハブは系統的に非常に近縁であり、そのゲノム構造も非常に高い類似性を示すことが考えられる。恐らくは、キクチハブでも向かい合った2つの
IID型PLA₂遺伝子が形成する相補的な塩基対結合で形成されるステムループ構造によって中性[Asp⁴⁹]PLA₂をコードする遺伝子が欠失したと考えられる。ヘビ毒の機能的多様性を生み出す主な要因は食餌の差異であると考えられているが（Barlow et al., 2009; Daltry et al., 1996; Li et al., 2005），遺伝子の構造的な変化や増減が食性へ影響したのか，それとも，ある種の偏った食性により使用頻度の少ない遺伝子が偽遺伝子化したのか，即ち，遺伝的な変化と食性の変化のどちらが原因であり結果であるかを検証することは非常に困難である。しかしながら，現在見つかる多くのヘビ種の，その毒の組成は主食となる食餌の捕食及び分解消化のためにリファインされ，適応していると考えられ，毒組成と食性に相関性があるのかを考察した。ホンハブは幼蛇期にはマウス・トガリネズミ 60.6%，トカゲ 36.3%，両生類 3%と捕食しているが，成蛇になるとラット・マウス 91.7%，鳥類 7.9%，トカゲ 2.4%以下，両生類 0.9%以下のように，成長に従って，哺乳類中心の食生活へと徐々に移行する（Nishimura et al., 1991）。一方，ヒメハブは幼・成蛇共に主にカエルを好んで食し，胃の内容物の 93%をカエルが占めているとの報告があり（Mori and Toda, 2011; Mori et al., 2002），キクチハブの幼蛇も主にトカゲやカエルを食しているとされる（Lin and Tu, 2008）。カエルやトカゲはマウスや鳥などの哺乳類・鳥類に比べると脂質の割合が少なく，高タンパク質な食餌である（カエル肉 100 g あたり 22.3 g のタンパク質，0.4 g の脂質が含まれており，スズメ肉 100 g あたり 18.1 g のタンパク質，5.9 g の脂質が含まれている（Ministry of education, culture, sports, science and technology, Japan, 2014）。ここでは，興味深い 1 つの観察として，ホンハブとヒメハブの毒腺から見出される毒タンパク質をコードする転写産物の網羅的解析の報告がある（Aird et al., 2013）。その報告では，ホンハブの全毒タンパク質成分中における PLAs とセリンプロテアーゼの割合が 32.14%と11.06%であるのに対して，ヒメハブではセリンプロテアーゼが全体の 93.11%を占め，PLAs はわずか 0.65%しか見出されなかった。この組成の著しい差異はヒメハブの毒組成が脂質分解よりもタンパク分解に最適化されたカエル食への適応の結果であると考えられる。ヒメハブの IIA 型 PLAs 遺伝子のうち OoPLAs-1 遺伝子以外の 2 つは偽遺伝子化していること，中性[Asp⁴⁴]PLA₂ 遺伝子がゲノム領域から完全に欠失している観察もヒメハブの低脂質食，カエル食への完全な適応を裏付けていている。今後，ヒメハブの近縁種であるキクチハブやマムシ属であるニホンマムシ，さらにはホンハブの近縁種であるトカラハブ，サキシマハブの毒 PLAs 遺伝子クラスターのゲノム構造を解
読・比較することで毒 PLAs 遺伝子の起源やバリエーションの違いをゲノム構造の変化と食性及び生態に関連付けてより詳細に説明できると期待している。

5-2. クサリヘビ科ヘビの\([\text{Lys}^{49}]\text{PLA}_2\) の比較から明らかになったハブ毒 PLAs の島嶼間多様性とその進化

日本南西諸島とは独立して火山性隆起で後成した小宝島と小宝島の生物相は、ほぼ奄美大島のそれを反映していることは十分考えられる。ところが、ボンハブとトカラハブはその体長も背中の模様も大きく異なっていて、その毒 PLAs アイソザイムも独自の進化を遂げていることが期待される。そこで、本項では、両ハブの毒タンパク質のクロマトグラフィーと遺伝子・ゲノム構造の比較を行い、特に\([\text{Lys}^{49}]\text{PLA}_2\) をコードする遺伝子の数とサブタイプの組成が棲息する島嶼間や種間で大きく異なることを報告し、背景にある分子機構を議論する。

5-2-1. クサリヘビ科ヘビの\([\text{Lys}^{49}]\text{PLA}_2\) の島嶼間多様性

\([\text{Lys}^{49}]\text{PLA}_2\) は主に筋収縮や筋壊死などを引き起こすことが知られており、これまでに德之島ボンハブの粗毒から BPI と BPII の 2 つ (Kihara et al., 1992; Liu et al., 1990; Yoshizumi et al., 1990), 奄美大島ボンハブの粗毒から BPI, BPII, BPIII の 3 つ (Chijiwa et al., 2003b; Murakami et al., 2009) のサブタイプが見出され、沖縄本島及び沖縄属島のボンハブでは偽遺伝子化して 1 つもサブタイプがない (Chijiwa et al., 2013b, 2000), ことが見出されている (Figure 67). 今回、トカラハブの粗毒について、定法に従ってその中分子量画分を陽イオンクロマトグラフィーで分画したところ、毒 PLAs アイソザイムに関しては、中性\([\text{Asp}^{49}]\text{PLA}_2\) である PLAs, 塩基性\([\text{Asp}^{49}]\text{PLA}_2\) である PLAs-B, \([\text{Lys}^{49}]\text{PLA}_2\) である BPI と、それぞれ同一のアミノ酸配列をもつ, PtPLA2, PtPLA-B, PtBPI と名付けたタンパク質を見出した。この結果は、奄美大島と小宝島、宝島との地理的関連性を反映した妥当なものと言える。一方、德之島や奄美大島ボンハブ毒から見出されるような BPIII や BPIII などの他の\([\text{Lys}^{49}]\text{PLA}_2\) のサブタイプが見出される事はなかった (Yatsui, 2006). さらに、トカラハブの毒腺 cDNA ライブラリーを作成し、IIA 型毒 PLAs をコードする転写産物を網羅的に探索したところ PtPLA2, PtPLA-B, PtBPI をコードする転写産物に加えて、高塩基性\([\text{Asp}^{49}]\text{PLA}_2\) である PLAs-N と一致する推定アミノ酸配列をもつ, PtPLA-N と名付けたタンパク質を
コードする転写産物が新たに同定された。一方で、BPII や BPIII など[Lys⁴⁹]PLA₂サブタイプをコードする転写産物は見出されなかった (Hayama, 2005; Yatsui, 2006)。2004年に、Tsaiらによってトカラハブから4つのそれぞれ異なるPLA₂アイソザイムのnativeタンパク質のN末端29アミノ酸残基が報告されているが、それらは本研究のPtPLA₂、PtPLA-B、PtPLA-N、PtBPI のN末端アミノ酸配列と一致していた (Tsai et al., 2004)。PLA₂アイソザイムの島嶼間多様性は、タイプごとその特徴が異なる。例えば、PLA₂は全ての島でそのアミノ酸配列は100%一致する。PLA-Nは奄美、徳之島タイプと沖縄タイプで1残基ポリモルフィズムがある。PLA-Bは、それぞれの島で特異的なアミノ酸置換が含まれている。一方で、[Lys⁴⁹]PLA₂はBPI、BPII、BPIIIのサブタイプ間で特異的なアミノ酸置換がそれぞれ1残基含まれているが、例えば奄美大島のBPIと徳之島のBPIのアミノ酸配列は100%一致する。即ち[Lys⁴⁹]PLA₂遺伝子は、島間でそのサブタイプが消えたり、獲得されたりしているように見える。その原因を探るために、先ず私はBPIIやBPIIIなどの他の[Lys⁴⁹]PLA₂サブタイプ遺伝子がトカラハブゲノムに含まれていないのか、または[Lys⁴⁹]PLA₂サブタイプ遺伝子の間にコピー数の差がないのかも、TaqManプローブを用いたSNPジェノタイピングで検証した(Figure 68)。[Lys⁴⁹]PLA₂遺伝子の第3エクソン領域にはBP-I遺伝子にはグアニン、BP-IIとBP-III遺伝子にはアデニン、と遺伝子座を区別できる一塩基非同義置換が含まれている。この多型を標的としたSNPジェノタイピングを、各ヘビゲノムDNAに対して行った(Figure 68)。その結果、トカラハブにはBP-II及びBP-III遺伝子の第3エクソン領域のSNPに対するシグナルが検出できず、トカラハブゲノムではBP-I遺伝子以外のBP-II及びBP-III遺伝子が存在しないことが分かった(Yamaguchi et al., 2015)。さらに、[Lys⁴⁹]PLA₂遺伝子とIIA型PLA₂遺伝子の相対的なコピー数を比較するために、各ヘビゲノムDNAに対して各PLA₂アイソザイム特異的な一塩基多型を標的としてSNPジェノタイピングを行った(Figure 69, 70)。その結果、個体差はあるが、トカラハブの[Lys⁴⁹]PLA₂遺伝子のコピー数は奄美大島に棲息するホンハブよりも約2.74倍少ないこと、一方のIIA型PLA₂遺伝子のコピー数はホンハブが約1.38倍多いことが分かった。即ち、トカラハブと奄美大島のホンハブではIIA型PLA₂遺伝子の総コピー数はほぼ変わらないが[Lys⁴⁹]PLA₂遺伝子に関しては明らかにトカラハブでの数が少ないことが分かり、トカラハブでは[Lys⁴⁹]PLA₂遺伝子のコピー数増加が阻害されていることが予想された。
5-2-2. トカラハブの[Lys⁴⁹]PLA₂遺伝子から見つかった特徴的な挿入配列
そこで、トカラハブの[Lys⁴⁹]型PLA₂であるPtBPIをコードするPtBP-I遺伝子のゲノム構造を調べるために、PtBP-I 遺伝子の5′、3′周辺領域も含めて特異的に増幅することができるプライマーPfPLA2-5′Flr1とPfPLA2-3′Flr3を用いたトカラハブゲノムへのPCRを行った。その結果、4,271 bp のPtBP-I遺伝子を截せたゲノム断片が増えた。塩基配列を解読したところ、この断片には5′及び3′UTRを含む第1から第4までの全てのエクソンを含めたPtBP-I遺伝子とその3′下流にPcRTFがコードされていることを見出した(Figure 71)。しかも興味深いことに、このPtBP-I遺伝子の第2イントロンには、既知のIIA型ハブ毒PLA₂遺伝子にはない、1,487 bp の大きな挿入配列が含まれることが分かった。私たちはこの1,487 bp の挿入配列にトラハブでの[Lys⁴⁹]PLA₂遺伝子のコピー数増加を阻害する要因があると考え、この挿入配列の詳細なアノテーションを行った。その結果、当該挿入配列の両端に5′-GGA AAA CGA TTG GGG -3′のTSD配列とポリA尾(poly-A-tail)と思われる特徴的な構造を示した。そこで、改めてこの当該配列をリピート配列や転移因子配列検索に特化したRepeatMaskerプログラムで解析したところ、この挿入配列はアノールトカゲ(Anolis carolinensis)で報告されているレトロトランススポソンLINE-1に高い同定性を示すことが分かった。そこで、既知アノールトカゲLINE-1配列と詳細なアライメント解析を行ったところ、この挿入配列がPtBP-I遺伝子と転写方向が逆向きに、LINEのORF2に含まれる逆転写酵素(RT)の後半領域から3′UTRまでをコードしていることが分かった(Figure 71)。多くのLINEがそうであるように、この挿入配列は、LINEの5′UTRやORF1そしてORF2の前半領域に相当する領域を欠損していた。さらに、コードされたRTドメインはナンセンス変異なども見出されなかったことから、推定されるRTドメインのアミノ酸配列をもとに他の既知のLINEから報告されている逆転写酵素様配列の相当する部分とともに系統解析を行ったところ、この挿入配列にコードされるRTドメインはLINE-1のそれらのクレードに含まれたことから、PtBPI遺伝子に挿入されている1,487 bp配列はクサリヘビ科ヘビのLINE-1であることが分かったので、それをPtLINE-1と名付けた(Figure 71)(Yamaguchi et al., 2015)。

5-2-3. トランススポソンとAID/APOBECファミリータンパク質
2013年に田中らがホンハブ血清因子様タンパク質(habu serum factor like
protein, HLP) をコードする HLP 遺伝子に挿入された LINE-1 を報告しているが (Tanaka et al., 2013), その塩基配列と PtLINE-1 のそれとの間に関性は見いだせなかった。LINE-1 はヒトゲノム中に 17%も含まれている non-LTR 型 LINE の主要なメンバーである (Lander et al., 2001)。一方で, 2012 年より数件明らかになったヘピゲノムドラフトシークエンスデータを調べたところ, ヘピゲノムにおける LINE-1 の存在率は非常に低く, non-LTR 型 LINE の大部分を占めているものの CR1 (Ikeda et al., 2010), Bov-B (Kordiš and Gubenšek, 1998, 1997), LINE-2 (Lovšin et al., 2001) であった (Castoe et al., 2013; Suh et al., 2014)。

ところで, 翻訳産物の多様性獲得の機構として RNA エディティングという現象の解明が進んでいる。例えば, AID (Activation-induced deaminase) は免疫グロブリン遺伝子可変部の体細胞高頻度突然変異 (somatic hypermutation) と重鎖定常部のクラススイッチの両方に関与し, APOBEC (Apolipoprotein B mRNA-editing enzyme catalytic polypeptide) はアポリポタンパク質 B の mRNA のエディティングに関与することが分かっている。これらのタンパク質は AID/APOBEC ファミリーと総称され, シチジンを脱アミノ化することでウリジンへ変化するシチジンデアミナーゼとして知られている (Conticello et al., 2005)。一方で, AID/APOBEC ファミリーバンパク質は HIV などのレトロウィルスの抗ウイルス (複製阻害) 因子としてもよく知られている。HIV などレトロウィルスの遺伝情報に Hypermutation を引き起こすことでその複製を阻害することが報告されているが (Alt and Honjo, 2007; Bélanger et al., 2013; Conticello, 2008; Holmes et al., 2007), シチジンデアミナーゼ活性非依存的な経路でもその複製を阻害することができるとの報告もされている (Bélanger et al., 2013; Horn et al., 2014; Iwatani et al., 2007)。また, レトロウィルスの原初型とも言うべき LINE や Alu などのレトロトランススポゾンの転移活性をシチジンデアミナーゼ活性非依存的に阻害することも報告されている。特に LINE-1 に対する複製阻害の機構に関しては広く研究が行われ, レトロトランススポゾン由来の RNA に結合することでその複製を阻害することが分かっている (Horn et al., 2014; Ikeda et al., 2011; Koito and Ikeda, 2013; Lovin and Peterlin, 2009; Metzner et al., 2012; Muckenfuss et al., 2006)。さらに, レトロトランススポゾンの進化及びその拡散は, その阻害因子である AID/APOBEC ファミリーバンパク質の進化との協調的であることが報告されており (Li et al., 2012), AID/APOBEC ファミリーバンパク質とレトロトランススポゾンとの機能的及び進化的な関連性が強く伺われる。
AID/APOBEC ファミリータンパク質がトカラハブ PtBP-I 遺伝子の第 2 イントロンに含まれる LINE-1 を標的とし、そのレトロトラランスポジションが抑制されたのではないだろうか (Figure 72)。その結果、PtBP-I 遺伝子は重複できず、その産物である BPII や BPIII をコードする [Lys49]PLA2 のサブタイプをコードする遺伝子が形成されなかったのではないだろうか。一方で、PtBP-I, PtPLA-B 遺伝子の下流には CR1 の逆転写写酵素様塩基配列の断片である PcRTF が含まれることから (Yamaguchi et al., 2014)、トカラハブでも IIA 型毒 PLA2 遺伝子の多重化は PcRTF と関連して生じたと考えられる。以上の仮説は、先述した SNP ジェノタイピングの結果からも支持される。さらに、LINE-1 はヘビゲノム内非常にマイナーな成分であることから、LINE-1 の複製とレトロトラランスポジションには強い抑制が働いていることが考えられる。ホンハブ毒腺の RNA-seq の配列情報データ中で見つかる LINE-1 転写産物の量は PcRTF に比べると圧倒的に少なく、加えて PtBP-I 遺伝子内で見つかった PtLINE-1 の配列にはシチジンデアミナーゼ活性による Hypermutation を受けた痕跡は見つけられなかったことから、ヘビゲノム内 LINE-1 の複製阻害はシチジンデアミナーゼ活性が非依存的な経路で生じているであろう (Figure 72)。一方、PcRTF の配列は今回見つかった LINE-1 のようにタンパク質コード領域が 1 つのフレームシフトも無く保存されているということはなく、その殆ど全てで塩基の挿入や欠失及び置換がかなりの頻度で生じており、レトロトラランスポゾンのタンパク質コード領域は偽遺伝子化されており (Figure 73)、さらには PcRTF の転写産物も各組織で非常に多く発現している。以上の観察から AID/APOBEC ファミリータンパク質は PcRTF に対しては、シチジンデアミナーゼ活性が非依存的な経路ではなく、活性依存的な Hypermutation を引き起こすことで、偽遺伝子化を誘導し、複製を制御していると考えられる (Figure 72)。AID/APOBEC ファミリータンパク質による複製阻害効果は non-LTR 型 LINE の種類に応じてディファレンシャルであるという報告があり (Lindič et al., 2013)、もしかすると、クサリヘビ科ヘビで観察されている加速進化は、PcRTF を標的とした AID/APOBEC ファミリータンパク質によるシチジンデアミナーゼ活性依存的な Hypermutation の影響を副次的に受けた結果なのかもしれない。また、例えば、AID/APOBEC ファミリータンパク質の生物種系統による違いがレトロトラランスポゾンのゲノム内における勢力の優劣に関与するのかもしれない。それは、トカラハブにおける CR1 と LINE-1 のような LINE 間での「綱引き」のようなものが高等真核生物のゲノム
の複雑化と特異な組織化に働いているかもしれない。手始めに、IIA 型 PLA₂遺伝子が多重化しているホンハブと寡数のヒメハブで AID/APOBEC ファミリータンパク質と LINE 類の比較解析を行うことは興味深い。

5-3. クサリヘビ科ヘビ PLA₂遺伝子発見とそれを調節するエビジェネティクス
LINE 類を始めとして、クサリヘビの毒 PLA₂遺伝子の形成・制御に様々な現象が関わっていることが浮かび上がってきた。そこで、PLA₂遺伝子の発現制御に関わるエビジェネティクスを調べてみることにした。まずは、動物普遍的な IB 型臓 PLA₂遺伝子のプロモーター領域におけるメチル化状態をホンハブとヒメハブの種間で比較する。一方で、ホンハブの組織間で発現パターンとメチル化状態を比較する。さらに、IIA 型毒 PLA₂をコードする塩基性 [Asp⁴⁹] PLA₂遺伝子（PfPLA-B と PfPLA-B′）と先祖型 PfPLA 6 遺伝子のプロモーター領域におけるメチル化状態をホンハブの組織間で比較する。

5-3-1. IB 及び IIA 型 PLA₂遺伝子のプロモーター領域のメチル化状態比較
IB 型臓 PLA₂の逆転写 PCR を用いた半定量的発現比較から、その相対的な発現量はヒメハブ、サキシマハブ、トカラハブ、ホンハブの順で少なくなっていることが分かっている (Nakasone, 2006)。これは IIA 型毒 PLA₂の活性の強さとその量が反比例しているためと考えられ、クサリヘビ科ヘビの食餌中のリン脂質分解の機能的補完現象と推測された。そこで、私はまずホンハブとヒメハブの IB 型 PLA₂遺伝子プロモーター領域におけるメチル化状態を比較した。その結果、ホンハブとヒメハブの IB 型 PLA₂遺伝子プロモーター領域におけるメチル化状態に大きな差は見られなかったことから、種間における IB 型 PLA₂遺伝子の発現量を調節する因子は上流の転写因子、もしくは転写因子が特異的に結合する機能配列が存在すると考えられる (Figure 74)。また、ホンハブの様々な体組織における IB 型 PLA₂遺伝子プロモーター領域におけるメチル化状態も調査したところ、腎臓では解析領域の 84.2%，脾臓では 49.6%，肝臓では 69.2%がメチル化されていた (Figure 75)。これは、腎臓では IB 型 PLA₂遺伝子の発現がプロモーター領域のメチル化により抑制されている一方で脾臓ではプロモーター領域の非メチル化状態が保たれることで恒常的な発現が生じているためと考
えた。一方、肝臓でメチル化と非メチル化の状態がモザイク様だった。そこで、プロモーター領域のメチル化と転写活性との関連性を調べるために、各組織から抽出されたTotal RNAを鉱型にIB型PLA2の逆転写PCRを行ったところ、予想に反して膝関節における発現量は毒腺と硬肉を除く全ての組織よりも低く、プロモーター領域のメチル化状態がモザイク様であった肝臓では転写量が非常に高いことが分かった（Figure 76）。改めて、別個体から膝関節と小腸を採取し、そのTotal RNAを用いた検証実験を行ったが、同様の結果が得られ、IB型PLA2遺伝子に関しては今回調べた領域でのメチル化と発現量に相関性は見出せなかった。

次に、私はIIA型毒PLA2をコードする塩基性[Asp⁴⁹]PLA2遺伝子（PfPLA-BとPfPLA-B'）と先祖型PfPLA6遺伝子のプロモーター領域におけるメチル化状態をホンハブの組織間で比較した。個体番号No.3の毒腺と肝臓における塩基性[Asp⁴⁹]PLA2遺伝子のプロモーター領域のメチル化状態は、毒腺では解析領域の65.5%、肝臓では88.9%がメチル化されていた（Figure 77）。詳細に毒腺での非メチル化パターンを検証したところ、プロモーター領域を中心にコアを形成している様子が確認できた。また、メチル化されているアレルとメチル化されていないアレルに2分できるようなパターンも確認することができた。個体番号No.6では、毒腺で88.5%、膝関節で87.2%、肝臓で91.7%がメチル化されており、毒腺でもプロモーター領域のメチル化が高くレベルであることが分かった（Figure 78）。これらの結果は、塩基性[Asp⁴⁹]PLA2の遺伝子発現状態には個体差があることを示しているのかかもしれない。または、塩基性[Asp⁴⁹]PLA2は恒常的に毒として産生されているのではなく、ガラガラヘビ属、ヒメガラガラヘビ属（Sistrurus）、ヤジリヘビ属（Bothrops）のヘビで報告されているような性別、成長段階、季節を反映した発現をしているかもしれません（Gregory-Dwyer et al., 1986; Menezes et al., 2006; Zelanis et al., 2010）。

先祖型PfPLA6遺伝子のプロモーター領域では、毒腺では解析領域の54.9%、膝関節では62.7%、肝臓では71.6%がメチル化されていた。先の塩基性[Asp⁴⁹]PLA2と同じく、毒腺での非メチル化のパターンが他の組織に比べてプロモーター領域を中心にコアを形成している様子が確認できた（Figure 79）。今回実験では、プロモーター領域のメチル化状態と発現量に相関性が見られた（Figure 51, 79）。こうしたプロモーター領域のメチル化感受性の転写因子などを調べることが今後の課題となろう。近年、極地に棲息する魚のゲノムは熱帯に棲息する魚より
も 5'メチル化シトシンの割合が有意に高いと報告され (Varriale and Bernardi, 2006a), 加えて変温動物である爬虫類に関しては, ヘビ類とトカゲ類のゲノムメチレーションレベルがカメ類とワニ類よりも高く, 温帯・熱帯魚と哺乳類との間に分布していることも報告されており (Varriale and Bernardi, 2006b), 生物種の棲息環境の温度や体温とゲノム DNA のメチル化状態に関連があることが示唆されている。サリヘビ科ヘビでも幼蛇特異的な毒因子や季節特異的な因子の存在が示唆されているが, プロモーター領域のメチル化がそれらの発現制御をしているのかもしれません。特に, 外気温の変化がスイッチングとなった季節依存的な毒性成分の変化とゲノム DNA のメチル化には興味深い関係性が予期され, 日本南西諸島に棲息するマムシ亜科ヘビでも今後, 季節, 性別, 成長段階特異的に発現している毒成分が見つかることを期待したい。

5-3-2. IB及びIIA型PLA2遺伝子のプロモーター領域に結合する転写因子の探索

ホンハブとヒメハブの IB 型 PL A2 遺伝子プロモーター領域におけるメチル化状態に大きな差は見られなかったことから, メチル化状態解析に使用したプロモーター領域の配列を JASPAR データベースでスキャンした。すると, ホンハブでは 133 種類の転写因子が 490 の結合部位に, ヒメハブでは 140 種類の転写因子が 535 の結合部位に結合する可能性あると予測された。この結合予測された転写因子群を絞り込むために, ヒトとマウスの腎臓 EST データベースを構築し, 腎臓で発現している転写因子をデータセットから抽出した (Table 7, 8)。続けて, 非メチル化の割合の高かった領域に結合する Score 値が 6.5 以上の転写因子をさらに抽出した (Table 9, 10)。その結果, 特に転写開始点から約 220~250 bp 上流と約 150 bp 上流に ETS ファミリーが結合する部位が集積していることが示された (Figure 80)。加えて, STAT ファミリーが結合する部位も約 150 bp 上流に位置していた。IIA 型毒 PLA2 遺伝子の発現調節を担う転写因子としては ESE-3 (Table 7-10 中では EHF と表示している) が中村らによって同定されているが, この ESE-3 の結合部位も当該領域には含まれていた (Nakamura et al., 2014)。さらに解析を進めると, 転写開始点から 60~80 bp 上流の領域にはホンハブでは Tcfcp21l という転写因子が, ヒメハブでは MZF1_5-13, Tcf12, RFX5 という異なる転写因子がそれぞれ結合する部位を見出した (Figure 80)。もしかするとホンハブとヒメハブでの IB 型 PL A2 遺伝子の発現量の差はこの領域に原因があるの
かもしれない。

さらに、塩基性[Asp49]PLA₂遺伝子（PfPLA-B と PfPLA-B’）と PfPLA 6 遺伝子のプロモーター領域においても、メチル化状態解析に使用したプロモーター領域の配列を JASPAR データベースでスキャンした。塩基性[Asp49]PLA₂遺伝子では 146 種類の転写因子が 711 の結合部位に、PfPLA 6 遺伝子では 133 種類の転写因子が 500 の結合部位に結合する可能性あると予測された。そこで、ホンハブの胆酸 EST データベースを用いて、先と同様の手法で胆酸特異的に発現している転写因子を抽出した (Table 11, 12)。続いて、非メチル化の割合の高かった領域に結合する Score 値が 6.5 以上の転写因子をさらに抽出した (Table 9, 10)。その結果、特に転写開始点から約 170~180 bp 上流と約 70 bp 上流に Helix-Loop-Helix ファミリーが結合する部位が集積していることが示されたが (Figure 81)，この Helix-Loop-Helix ファミリーが集積している部位は IB 型 PLA₂プロモーター領域では見出することはできなかった。さらに、その約 170~180 bp 上流に位置する Helix-Loop-Helix ファミリー結合部位の直後には ETS ファミリー結合部位があり、これは中村らによって同定された ESE-3 結合部位 (Nakamura et al., 2014) よりも約 100 bp 上流にあたり、PfPLA 6 ではそこに ETS ファミリーが結合するとの予測はされなかったので、PfPLA 6 のユビキタスな発現はその部位に関連があるのかもしれない。今後は、ゲルシフトアッセイなどのウェットな手法を用いた転写因子と DNA の相互作用を検討していく必要がある。

5-4. 研究の総括論議

クサリヘビ科ヘビの II 型毒 PLA₂アインソサイムに対する研究の歴史は長いが、これまでそれらアインソサイムをコードする遺伝子の起源やその分子進化の過程について言及した報告はほとんど無く、特にクサリヘビ科ヘビの毒 PLA₂と哺乳類や鳥類で保存されている非毒性型の II 型及び V 型 PLA₂との比較から毒 PLA₂遺伝子の起源と、その分子進化にまで言及した研究はこれまでに存在しなかった。そこでヘビの進化学的な考察を交え、分泌型 PLA₂遺伝子の分子進化の過程とゲノムにおけるクラスター構造の形成の過程を本研究論文で示した。

本論文において、クサリヘビ科ヘビの II 型毒 PLA₂遺伝子クラスターとその近傍領域に、IIF, IID, IIE 型の分泌型 PLA₂遺伝子、加えて II 型の分泌型 PLA₂遺伝子が集積するゲノムクラスター構造の両端に MULI 遺伝子と OTUD3 遺伝子が
それぞれ存在していることを明らかにした。それはクサリヘビ科ヘビの IIA 型毒 PLA₂ 遺伝子が集積する領域とその周辺部を含めたゲノム領域が、高等脊椎動物が普遍的に有する分泌型 PLA₂ 遺伝子クラスターと起源を同じくすること、そして当該領域ではクサリヘビ科ヘビでのみ特異的に IIA 型 PLA₂ 遺伝子が高い度な重複を繰り返し、クサリヘビ科ヘビ独自の IIA 型 PLA₂ イソザイム遺伝子が集積するゲノムドメイン構造を形成していることを示した。また、ヘビ類の II 型分泌型 PLA₂ 遺伝子クラスターの側方に位置する UBXN10 遺伝子、VWA5B1 遺伝子、MULI 遺伝子を含む領域は過去に生じた逆位によって、現在のゲノム構造が形成されたことも示し、過去に UBXN10 遺伝子の側方に位置していた IIC 型 PLA₂ 遺伝子が領域の逆位事象の副次的な影響を受け、ヘビ類ゲノムでは欠失したこと を推測した。

クサリヘビ科マムシ亜科の属間ににおける IIA 型 PLA₂ の系統解析とそれら遺伝子が集積するクラスター領域の比較解析から、酸性[Asp₄⁹]型、中性[Asp₄⁹]型、塩基性[Asp₄⁹]型、強塩基性[Asp₄⁹]型、祖先型、[Lys₄⁹]の最も 6 つのサブグループを形成し、少なくとも酸性[Asp₄⁹]型、中性[Asp₄⁹]型、祖先型、[Lys₄⁹]の PLA₂ をコードする遺伝子のシナセーニーはハブ属、ヒメハブ属、ガラガラヘビ属の属を超えて保存されていることを明らかにした。さらに、酸性[Asp₄⁹]型、祖先型、[Lys₄⁹]型の PLA₂ の K₆/K₅ 値を算定したところ、それらの値は全て 1 を下回り中立的に進化してきたことを示した。しかしながら、遺伝子の 3'下流に PcRTF が接続する[Lys₄⁹]型の PLA₂ の K₆/K₅ 値が酸性型と祖先型の PLA₂ と比べ 3 倍以上も高く算定されたことは、大変興味深く、毒 PLA₂ アイソザイムの多様性獲得に PcRTF が関与している可能性を示唆した。さらに、3 属ヘビのゲノム構造の比較とヒメハブゲノムで見つかる IID 型 PLA₂ 遺伝子の第 1 エクソンから第 1 イントロン前半部までの核の様子から、ヒメハブゲノムでは向かい合う 2 つの IID 型 PLA₂ 遺伝子とそれに挟まれた中性[Asp₄⁹]PLA₂ 遺伝子を含む領域がステルループ構造を形成し、大規模に欠失していたことを明らかにした。また、クサリヘビ科ヘビの分岐年代を推定し、日本南西諸島へのハブ属及びヤマハブ属ヘビの更新世陸橋渡来仮説を否定し、古黄河と古揚子江による地理的隔離が種分化と島嶼特異的に棲息するハブ属及びヤマハブ属の分布を特徴付けた。それら結果は特異性のみに関心がいきがちであった毒 PLA₂ に関する研究に、非毒性 PLA₂ との比較を導入することで、分泌型 PLA₂ の起源と分子進化の理解に普遍的な知見を与ええたと期待される。また、今後はクサリヘビ科ヘビの属間・種間における分泌
型 PLA₂ 遺伝子クラスターの構造比較をさらに行うことで、多様な毒 PLA₂ アイソザイム遺伝子の出現の様子が見えてくると想像する。

毒 PLA₂ アイソザイムの多様性獲得とサブタイプの増減に関与する分子機序を同定するために、島嶼集団間でサブタイプのレパートリーに違いが見られる[49]PLA₂ アイソザイムに着目し、それらをコードする遺伝子の解析を行ったところ、トカラハブでは BP-I 遺伝子以外の[49]PLA₂ アイソザイム遺伝子が存在しないこと、トカラハブ BP-I 遺伝子の第 2 イントロンにはレトロトランススポゾン LINE-1 が特異的に挿入していることが示された。即ち、この LINE-1 が[49]PLA₂ アイソザイム遺伝子の多様性獲得とコピー数増加に抑制的に働いていること、その作用機序に AID/APOBEC ファミリータンパク質が関与していること、さらに PcRTF に対する Hypermutation が毒 PLA₂ アイソザイムの多様性獲得に影響したことを提案する。

この結果はこれまで毒 PLA₂ 遺伝子クラスターに散在して見つかったしてきたレトロトランススポゾンと遺伝子の多重化及び加速進化を説明できる新たな仮説であり、レトロトランススポゾンとその阻害因子が宿主ゲノム内で協調的に進化し、ゲノム形成に関わっていることを示す例になると思われる。

IIA 型 PLA₂ である塩基性[49]PLA₂ 遺伝子と祖先型 PLA₂ 遺伝子、及び IB 型 PLA₂ 遺伝子のプロモーター領域のメチル化状態解析を行った結果、ヘビゲノムにおいてもメチル化パターンの変化が遺伝子の転写調節に関与している結果が示された。しかしながら、メチル化パターンの変化だけでは説明できない遺伝子発現の様子から、多重遺伝子である PLA₂ の転写制御は LCR のような包括的な制御を担う転写調節領域が関わるが予想される。この結果は未だに解明されていない毒タンパク質の発現制御や毒腺特異的な発現様式及び多重遺伝子の発現制御を理解する役割を果たし、これまであまり研究が行われてこなかった毒タンパク質遺伝子、多重遺伝子、そして爬虫類ゲノムに対するエピジェネティクス研究に基盤となるフレームワークを提案した。
6. 図表

6-1. Figures …………………………………………………… 143 ~ 236

6-2. Tables …………………………………………………… 237 ~ 250
Figure 1. 例題: 爬虫綱ヘビ亜目の分類

爬虫綱有鱗目ヘビ亜目の分類

爬虫綱
有鱗目
ヘビ亜目
(Reptilia: Squamata: Serpentes)

・盲蛇下目
(Scolecophidia)

・メクラヘビ上科
(Typhlopoidea)

・アメリカメクラヘビ科
(Anomalepididae)
 属1
 種15

・ホソメクラヘビ科
(Leptotyphlopidae)
 属2
 種87

・メクラヘビ科
(Typhlopidae)
 属6
 種203

・真蛇下目
(Alethinophidia)

・ムカシヘビ上科
(Henophidia)

・サンゴパイプヘビ科
(Aniliidae)
 属1
 種1

・ドワーフボア科
(Tropidophiidae)
 属2
 種19

・ツメナシボア科
(Bolyeriidae)
 属2
 種2

・サンジニアボア科
(Sanziniidae)
 属2
 種4

・ジムグリパイソン科
(Calabariidae)
 属1
 種1

・ラバーボア科
(Charinidae)
 亜科4
 属7
 種7

・ナンヨウボア科
(Candoiidae)
 属1
 種5

・スナボア科
(Erycidae)
 属1
 種13

・ボア科
(Boidae)
 属5
 種29

・ミミズサンゴヘビ科
(Anomochilidae)
 属1
 種2

・パイプヘビ科
(Cylindrophiidae)
 属1
 種8

・ミジカオヘビ科
(Uropeltidae)
 属8
 種47

・サンビームヘビ科
(Xenopeltidae)
 属1
 種2

・メキシコパイソン科
(Loxocemidae)
 属1
 種2

・ニシキヘビ科
(Pythonidae)
 属8
 種31

・ナミヘビ上科
(Caenophidia)

・ヤスリヘビ科
(Acrochordidae)
 属1
 種3

・クサリヘビ科
(Viperidae)
 亜科32
 属224

・モールバイパー科
(Atractaspididae)
 属12
 種64

・コブラ科
(Elapidae)
 属61
 種235

・ナミヘビ科
(Colubridae)
 属304
 種1,938

毒蛇はこの4科に属する。

ヘビ亜目の分類が近年大幅に修正され, いくつかの亜科・属が科に昇格し, 新たな科が設けられた。正式な分類名称が日本語にまだ対応していない場合は以前の亜科・属の日本語名称を科名として表記している。

Figure 2. ヘビ頭骨と毒牙の構造

上段に頭骨、下段に毒牙をそれぞれ示す。毒牙の灰色領域は毒液が通る中空構造及び溝構造を示す。
Figure 3. 日本南西諸島に棲息するクサリヘビ科ヘビ

トカラハブ
(Protobothrops tokarensis)

ホンハブ
(Protobothrops flavoviridis)

サキシマハブ
(Protobothrops elegans)

ヒメハブ
(Ovophis okinavensis)
Figure 4. ホンハブ毒腺転写産物中から見つかる毒成分転写産物

出典：Aird et al., BMC Genomics 2013, 14(1), 790 (一部修正)。
Figure 5. リン脂質の sn-2 位エステル結合を加水分解する PLA2
Figure 6. アラキドン酸カスケード
Figure 7. 分泌型ホスホリパーゼ A2 の構造

出典：Dennis et al., Chemical Reviews 2011, 111(10), 6130-6185 (一部修正)。
Figure 8. 徳之島に棲息するホンハブから見出された毒 PLA2 アイソザイム

(A) 粗毒中分子量画分の陽イオン交換クロマトグラフィーの溶出プロファイル。
(B) 毒 PLA2 アイソザイムのアミノ酸配列に基づく系統樹。
(C) 毒 PLA2 アイソザイムのアミノ酸配列アライメント。黒塗りはシステイン残基を示す。 ：αヘリックス、 ：βシートをそれぞれ示す。
Figure 9. ホンハブ（徳之島）より獲得された毒 PLA₂ アイソザイム遺伝子を含むゲノム断片

出典：Nakashima et al., 1993. Proc Natl Acad Sci U S A. 90, 13, 5964-5968 (一部修正)。
Figure 10. 奄美大島に棲息するホンハブから見出された毒 PLA2 アイソザイム

(A) 毒中分子量画分の陽イオン交換クロマトグラフィーの溶出プロファイル。 (B) 毒 PLA2 アイソザイムのアミノ酸配列に基づく系統樹。 (C) 毒 PLA2 アイソザイムのアミノ酸配列アライメント。黒塗りはシステイン残基を示す。\[\text{活性部位} \]は\(\alpha \)-ヘリックス, \[\text{β-ウィング} \]は\(\beta \)-シートをそれぞれ示す。
Figure 11. ホンハブ（奄美大島）より獲得された毒 PLA2 アイソザイム遺伝子を載せたゲノム断片

→：遺伝子領域。■：コーディング領域。□：5' UTR。△：3' UTR。□：PcRTF。遺伝子構造図の下の番号と枠はアクセッション No. とその領域を示す。
Figure 12. 沖縄本島，伊平屋島，久米島に棲息するホンハブから見出された毒 PLA2 アイソザイム

(A) 粗毒中分子量画分の陽イオン交換クロマトグラフィーの溶出プロファイル。 (B) 毒 PLA2 アイソザイムのアミノ酸配列アライメント。黒塗りはシステイン残基を示す。

αヒリックス: はαヘリックス、 はβシートをそれぞれ示す。
Figure 13. ホンハブ粗毒中分子量画分の陽イオンクロマトグラフィーの溶出プロファイル島嶼間比較
Figure 14. 島嶼特異的なホンハブから見出された [Lys^{49}]PLA\textsubscript{2} アイソサイム遺伝子群の構造
Figure 15. トカラハブから見出された毒 PLA2 アイソザイム

(A) 粗毒中分子量画分の陽イオン交換クロマトグラフィーの溶出プロファイル。 (B) 毒 PLA2 アイソザイムのアミノ酸配列に基づく系統樹。
(C) 毒 PLA2 アイソザイムのアミノ酸配列アライメント。黒塗りはシステイン残基を示す。：はαヘリックス、：はβシートをそれぞれ示す。
Figure 16. サキシマハブから見出された毒 PLA2 アイソザイム

(A) 粗毒中分子量画分の陽イオン交換クロマトグラフィーの溶出プロファイアル。 (B) 毒 PLA2 アイソザイムのアミノ酸配列に基づく系統樹。
(C) 毒 PLA2 アイソザイムのアミノ酸配列アライメント。黒塗りはシテイン残基を示す。 ：はαヘリックス、 ：はβシートをそれぞれ示す。
Figure 17. ヒメハブより獲得された毒 PLA2 アイソザイム遺伝子を含むゲノム断片予測図

出典：Nobuhisa et al., 1996. Gene 172, 2, 267-272 (一部修正)
<table>
<thead>
<tr>
<th></th>
<th>K_{A}/K_{S} ratio</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1.</td>
<td>PfPLA 6</td>
<td>1.2193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>PfpgPLA 1b (A)</td>
<td>1.0929</td>
<td>0.8366</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PfPLA2 (A)</td>
<td>1.0872</td>
<td>1.2135</td>
<td>0.8997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PfPLA-B (A)</td>
<td>1.1132</td>
<td>1.1950</td>
<td>0.8871</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>PfPLA-B' (A)</td>
<td>1.0411</td>
<td>0.9838</td>
<td>0.8669</td>
<td>1.0464</td>
<td>1.0754</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>PfPLA-N (A)</td>
<td>1.1186</td>
<td>1.7969</td>
<td>1.1016</td>
<td>1.1626</td>
<td>1.1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>PfBP-II (A)</td>
<td>1.2010</td>
<td>1.8068</td>
<td>1.1797</td>
<td>1.2583</td>
<td>1.2879</td>
<td>1.1843</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>PfBP-III (A)</td>
<td>1.1463</td>
<td>0.4670</td>
<td>0.6462</td>
<td>1.1969</td>
<td>1.1821</td>
<td>1.0813</td>
<td>1.0520</td>
<td>1.1183</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>OoPLA-o1</td>
<td>1.2146</td>
<td>1.2044</td>
<td>1.5547</td>
<td>1.7295</td>
<td>1.7701</td>
<td>1.2201</td>
<td>1.3035</td>
<td>1.4059</td>
<td>1.3040</td>
</tr>
<tr>
<td>10.</td>
<td>OoPLA-o2</td>
<td>1.4899</td>
<td>1.4441</td>
<td>1.0484</td>
<td>1.4211</td>
<td>1.4565</td>
<td>1.7453</td>
<td>0.9495</td>
<td>1.0505</td>
<td>1.1948</td>
</tr>
<tr>
<td>11.</td>
<td>OoPLA-o3</td>
<td>0.2853</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>K_{S} value</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1.</td>
<td>PfPLA 6</td>
<td>0.2853</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>PfpgPLA 1b (A)</td>
<td>0.3052</td>
<td>0.1705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PfPLA2 (A)</td>
<td>0.2471</td>
<td>0.1908</td>
<td>0.2078</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PfPLA-B (A)</td>
<td>0.2518</td>
<td>0.1871</td>
<td>0.2039</td>
<td>0.0031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>PfPLA-B' (A)</td>
<td>0.2779</td>
<td>0.2627</td>
<td>0.2318</td>
<td>0.1855</td>
<td>0.1897</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>PfPLA-N (A)</td>
<td>0.2806</td>
<td>0.3203</td>
<td>0.2908</td>
<td>0.2538</td>
<td>0.2586</td>
<td>0.2908</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>PfBP-II (A)</td>
<td>0.2810</td>
<td>0.3207</td>
<td>0.2911</td>
<td>0.2541</td>
<td>0.2589</td>
<td>0.2911</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>PfBP-III (A)</td>
<td>0.3120</td>
<td>0.1300</td>
<td>0.1970</td>
<td>0.2343</td>
<td>0.2303</td>
<td>0.3007</td>
<td>0.3448</td>
<td>0.3452</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>OoPLA-o1</td>
<td>0.0290</td>
<td>0.2884</td>
<td>0.2990</td>
<td>0.2500</td>
<td>0.2547</td>
<td>0.2249</td>
<td>0.2930</td>
<td>0.2934</td>
<td>0.3202</td>
</tr>
<tr>
<td>10.</td>
<td>OoPLA-o2</td>
<td>0.2624</td>
<td>0.2351</td>
<td>0.2592</td>
<td>0.2241</td>
<td>0.2287</td>
<td>0.3079</td>
<td>0.1452</td>
<td>0.1453</td>
<td>0.2808</td>
</tr>
<tr>
<td>11.</td>
<td>OoPLA-o3</td>
<td>0.2340</td>
<td>0.1573</td>
<td>0.2309</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>K_{S} value</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1.</td>
<td>PfPLA 6</td>
<td>0.2340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>PfpgPLA 1b (A)</td>
<td>0.2793</td>
<td>0.2038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PfPLA2 (A)</td>
<td>0.2273</td>
<td>0.1573</td>
<td>0.2309</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PfPLA-B (A)</td>
<td>0.2262</td>
<td>0.1565</td>
<td>0.2298</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>PfPLA-B' (A)</td>
<td>0.2189</td>
<td>0.2670</td>
<td>0.2674</td>
<td>0.1773</td>
<td>0.1764</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>PfPLA-N (A)</td>
<td>0.2509</td>
<td>0.1782</td>
<td>0.2639</td>
<td>0.2183</td>
<td>0.2173</td>
<td>0.2908</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>PfBP-II (A)</td>
<td>0.2339</td>
<td>0.1775</td>
<td>0.2468</td>
<td>0.2020</td>
<td>0.2010</td>
<td>0.2458</td>
<td>0.0118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>PfBP-III (A)</td>
<td>0.2722</td>
<td>0.2784</td>
<td>0.3049</td>
<td>0.1956</td>
<td>0.1949</td>
<td>0.2781</td>
<td>0.3278</td>
<td>0.3087</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>OoPLA-o1</td>
<td>0.1352</td>
<td>0.2395</td>
<td>0.1923</td>
<td>0.1445</td>
<td>0.1439</td>
<td>0.1844</td>
<td>0.2248</td>
<td>0.2086</td>
<td>0.2455</td>
</tr>
<tr>
<td>10.</td>
<td>OoPLA-o2</td>
<td>0.1761</td>
<td>0.1628</td>
<td>0.2472</td>
<td>0.1577</td>
<td>0.1570</td>
<td>0.1764</td>
<td>0.1529</td>
<td>0.1383</td>
<td>0.2350</td>
</tr>
</tbody>
</table>

Figure 18. ハブ毒 PLA2 アイソサイム遺伝子の非同義置換と同義置換の比 (K_{A}/K_{S})
Figure 19. クサリヘビ科ヘビの IIA 型毒 PLA₂ アイソサイム遺伝子の構造

(A) Scomb 配列アラインメント。Scomb-4 と Scomb-5 はそれぞれ PfPLA 4 と PfPLA 5 遺伝子の上流に存在する。Scomb-Mj はモハーベガラガラヘビ (Crotalus scutulatus) の Mojave toxin 遺伝子上流に存在する。Scomb は Scomb 配列を介した組み換えモデル。黒塗りは Scomb に挟まれている毒 PLA₂ 遺伝子と PcRTF を示す。
出典：Ikeda et al., 2010. Gene 461, 1-2, 15-25 (一部修正)。

Figure 20. Scomb 配列による組み換えモデル
Class I

Retrotransposons

LTR

Envelope (+) — Retrovirus (HIV, MLV, etc.)

Envelope (-) — (Ty, IAP, copia, etc.)

Non-LTR

Autonomous — LINE (L1, L2, CR1, RTE, etc.)

Non-autonomous — SINE (Alu, etc.), Truncated transposable elements

Class II

DNA transposons

Autonomous

Non-autonomous — Miniature inverted-repeat transposable elements (MITE), Truncated transposable elements

Figure 21. ゲノムに含まれる転移因子群の分類

Figure 22. トランスポゾンの転移機序

env, Envelope; gag, group specific antigen; LTR, Long Terminal Repeat; ORF, Open reading frame; pol, polymerase; UTR, Untranslated region。
矢印はITR, Inverted terminal repeat, 三角形はTSD, Tandem site duplicationを示す。出典：Levin and Moran, 2011 Nat. Rev. Genet. 12, 9, 615–627 (一部修正)。
Figure 23. Non-LTR 型 LINE の分類と構造

Figure 24. ハブ毒 PLA2 アイソザイム遺伝子の挿入と欠失モデル

出典: Ikeda et al., 2010. Gene 461, 1-2, 15-25 (一部修正)。
Figure 25. PcRTF 4 及び PcRTF 5 の Truncate プロセスのモデル
黒太線は接続配列 (connective sequence) を示し、赤領域は接続配列及び RT ドメインに存在する相同断片配列を示す。
出典：Ikeda et al., 2010. Gene 461, 1-2, 15-25 (一部修正)。
Figure 26. 5' Transduction によるハブ毒 PLA2 アイソザイム遺伝子の多重化モデル
Figure 27. IIE 型 PLA2 に高い相同性を示す 3 つのアイソティグ

isotig03504 と isotig19327 の大文字は isotig03504 との一致領域を示し, 小文字は不一致領域を示す。
Figure 28. ビルマニシキヘビとキングコブラの分泌型 PLA₂ 遺伝子クラスター
Figure 29. 哺乳類・鳥類の分泌型 PLA₂ 遺伝子クラスター
Figure 30. PFGE によるゲノムサイズの確認

ゲル: SeaPlaque® GTG® Agarose
ゲル濃度: 1% (w/v)
泳動パッファー: 1×TAE パッファー
泳動温度: 16°C
分画サイズ: 5~100 kb
泳動時間: 15 時間 16 分

M1: T7 control DNA 分子量マーカー (40 kb) 100 ng
1: ホンハブ (奄美大島) No. 1 ゲノム DNA
2: ホンハブ (奄美大島) No. 2 ゲノム DNA
3: ホンハブ (奄美大島) No. 3 ゲノム DNA
4: ホンハブ (奄美大島) No. 4 ゲノム DNA
5: ホンハブ (奄美大島) No. 5 ゲノム DNA
6: ホンハブ (奄美大島) No. 5 ゲノム DNA シアリング 2 回
7: ホンハブ (奄美大島) No. 5 ゲノム DNA シアリング 3 回
8: ホンハブ (奄美大島) No. 5 ゲノム DNA シアリング 4 回

M2: λDNA (48.5 kb) 300 ng

M1: T7 control DNA 分子量マーカー (40 kb) 100 ng
1: トカラハブ (小宝島) No. 10 ゲノム DNA
2: トカラハブ (小宝島) No. 11 ゲノム DNA
3: トカラハブ (小宝島) No. 12 ゲノム DNA
4: トカラハブ (小宝島) No. 13 ゲノム DNA
5: トカラハブ (小宝島) No. 14 ゲノム DNA
6: トカラハブ (小宝島) No. 15 ゲノム DNA
7: ヒメハブ (奄美大島) No. 17 ゲノム DNA
8: ヒメハブ (奄美大島) No. 18 ゲノム DNA
9: ヒメハブ (奄美大島) No. 19 ゲノム DNA
10: ヒメハブ (奄美大島) No. 20 ゲノム DNA
11: ヒメハブ (奄美大島) No. 21 ゲノム DNA
12: ヒメハブ (奄美大島) No. 22 ゲノム DNA
13: ヒメハブ (奄美大島) No. 23 ゲノム DNA

M2: λ/StyI 分子量マーカー 0.2 μg
Figure 31. ホンハブゲノムライブラリーに対するコロニーハイブリダイゼーション

プレート No. 1-25 の左上と右下、プレート No. 21-55 の上と下の陽性スポットはポジティブコントロール (NIS-1 クローン) のシグナルである。
Figure 31. ホンハブゲノムライブラリーに対するコロニーハイブリダイゼーション

プレート No. 1-25 の左上と右下、プレート No. 21-55 の上と下の陽性スポットはポジティブコントロール (NIS-1 クローン) のシグナルである。
Figure 31. ホンハブゲノムライブラリーに対するコロニーハイブリダイゼーション
プレート No. 1-25 の左上と右下、プレート No. 21-55 の上と下の陽性スポットはポジティブコントロール (NIS-1 クローン) のシグナルである。
Figure 31. ホンハブゲノムライブラリーに対するコロニーハイブリダイゼーション

プレート No. 1–25 の左上と右下、プレート No. 21–55 の上と下の陽性スポットはポジティブコントロール（NIS-1 クローン）のシグナルである。
Figure 31. ホンハブゲノムライブラリーに対するコロニーハイブリダイゼーション

プレート No. 1–25 の左上と右下、プレート No. 21–55 の上と下の陽性スポットはポジティブコントロール (NIS-1 クローン) のシグナルである。
Figure 31. ホンハブゲノムライブラリーに対するコロニーハイブリダイゼーション

プレート No.1-25 の左上と右下、プレート No.21-55 の上と下の陽性スポットはポジティブコントロール（NIS-1 クローン）のシグナルである。
Figure 31. ホンハブゲノムライブラリーに対するコロニーハイブリダイゼーション

プレート No. 1-25 の左上と右下、プレート No. 21-55 の上と下の陽性スポットはポジティブコントロール (NIS-1 クローン) のシグナルである。
ヒメハブゲノムライブラリーに対するコロニーハイブリダイゼーション

プレート No. 1~8 の左上と右下、プレート No. 9-15 の上と下の陽性スポットはポジティブコントロール (NIS-1 クローン) のシグナルである。
Figure 32. ヒメハブゲノムライブラリーに対するコロニーハイブリダイゼーション

プレート No. 1-8 の左上と右下、プレート No. 9-15 の上と下の陽性スポットはポジティブコントロール (NIS-1 クローン) のシグナルである。
Figure 33. ホンハブゲノムライブラリーに対するコロニー PCR

M: λ/SmI分子量マーカー, Plate No.: プレート番号, Section No.: 区画番号
Figure 33. ホンハブゲノムライブラリーに対するコロニー PCR

M: λ Hind III 分子量マーカー, Plate No.: プレート番号, Section No.: 区画番号
Figure 33. ホンハブゲノムライブラリーに対するコロニー PCR

M: λ/Sty I分子量マーカー, Plate No.: プレート番号, Section No.: 区画番号
Figure 33. ホンハブゲノムライブラリーに対するコロニー PCR

M: λ/Sty I 分子量マーカー, Plate No.: プレート番号, Section No.: 区画番号

Sty I 分子量マーカー, Plate No. 46, Section 93, Plate No. 55, Section 10
Figure 34. ヒメハブゲノムライブラリーに対するコロニー PCR

M: λ/Sty I 分子量マーカー, Plate No.: プレート番号, Section No.: 区画番号

2ndスクリーニング陽性
Plate No. 7, Section 84
Plate No. 7, Section 92
Plate No. 8, Section 86
Plate No. 8, Section 87
Figure 34. ヒメハブゲノムライブラリーに対するコロニー PCR

M: λ/Sty I分子量マーカー, Plate No.: プレート番号, Section No.: 区画番号
Figure 35. クサリヘビ科ヘビの IIE 型 PLA2 遺伝子の同定

(A) ホンハブ IIE 型 PLA2 遺伝子とその外縁領域のゲノム構造。矢頭は PCR プライマーを示す。

: 遺伝子領域, : コーディング領域, : 5' UTR, : 3' UTR, : PcRTF。(B) 各種 PCR の泳動写真。
Figure 36. IIE 型 PLA₂ アミノ酸アラインメント
シスチエン残基は黒塗りで示す。四角括弧内には分泌型 PLA₂ のグループ、丸括弧内には PfIIEPLA₂ との相同値を示す。Pf, P. flavoviridis; Pt, P. tokarensis; Pe, P. elegans; Dt, O. okinavensis; Lm, Leioheterodon madagascariensis; Hs, Homo sapiens; Mm, Mus musculus; Ls, Laticauda semifasciata.
Figure 37. IIE 型及び他分泌型 PLA2 の成熟タンパク質に基づく系統樹

ノードの数字はブートストップ値を示す。

Br, Bos taurus; Cf, Canis lupus familiaris; Gg, Gallus gallus; Mc, Macaca mulatta; Oa, Ornithorhynchus anatinus; Oc, Oryctolagus cuniculus; Pn, Pan troglodytes。
Figure 38. IIE 型 PLA2 遺伝子転写産物の発現組織分布

(A) 逆転写 PCR による IIE PLA2 遺伝子転写産物発現組織ポディーマップ。右数値は PCR サイクル数を示す。
(B) 半定量的発現量の比較。ACTB 遺伝子転写産物増幅バンドの蛍光強度に基づいた定量値を算定し、IIE PLA2 遺伝子転写産物増幅バンドの蛍光強度を定量値補正した後、ボンハブ肺での定量値を 1 として、各サンプル間での発現量を相対的に比較した。
<table>
<thead>
<tr>
<th>K\textsubscript{a}/K\textsubscript{s} ratio</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PfIIEPLA\textsubscript{2}, PtIIEPLA\textsubscript{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PelIIEPLA\textsubscript{2}</td>
<td>0.6125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. OoIIEPLA\textsubscript{2}</td>
<td>0.1783</td>
<td>0.2145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. CmpIIEPLA\textsubscript{2}</td>
<td>0.2661</td>
<td>0.2410</td>
<td>0.2697</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. VbIIEPLA\textsubscript{2}</td>
<td>0.1873</td>
<td>0.1769</td>
<td>0.1565</td>
<td>0.1073</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. LmIIEPLA\textsubscript{2} (Lei-1)</td>
<td>0.2891</td>
<td>0.3033</td>
<td>0.3273</td>
<td>0.2552</td>
<td>0.3721</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. DtIIEPLA\textsubscript{2} (Dis-1)</td>
<td>0.4243</td>
<td>0.4257</td>
<td>0.4290</td>
<td>0.3872</td>
<td>0.4344</td>
<td>0.7869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. OhIIEPLA\textsubscript{2}</td>
<td>0.2136</td>
<td>0.1996</td>
<td>0.2241</td>
<td>0.1671</td>
<td>0.1810</td>
<td>0.3509</td>
<td>0.6167</td>
<td></td>
</tr>
<tr>
<td>9. PmIIEPLA\textsubscript{2}</td>
<td>0.2585</td>
<td>0.2598</td>
<td>0.2413</td>
<td>0.2120</td>
<td>0.2305</td>
<td>0.2243</td>
<td>0.3672</td>
<td>0.2201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K\textsubscript{a} value</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PfIIEPLA\textsubscript{2}, PtIIEPLA\textsubscript{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PelIIEPLA\textsubscript{2}</td>
<td>0.0179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. OoIIEPLA\textsubscript{2}</td>
<td>0.0180</td>
<td>0.0240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. CmpIIEPLA\textsubscript{2}</td>
<td>0.0301</td>
<td>0.0300</td>
<td>0.0302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. VbIIEPLA\textsubscript{2}</td>
<td>0.0472</td>
<td>0.0471</td>
<td>0.0411</td>
<td>0.0286</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. LmIIEPLA\textsubscript{2} (Lei-1)</td>
<td>0.1509</td>
<td>0.1562</td>
<td>0.1557</td>
<td>0.1312</td>
<td>0.1456</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. DtIIEPLA\textsubscript{2} (Dis-1)</td>
<td>0.2392</td>
<td>0.2369</td>
<td>0.2260</td>
<td>0.2112</td>
<td>0.2193</td>
<td>0.1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. OhIIEPLA\textsubscript{2}</td>
<td>0.1090</td>
<td>0.1005</td>
<td>0.1128</td>
<td>0.0855</td>
<td>0.0922</td>
<td>0.1110</td>
<td>0.1839</td>
<td></td>
</tr>
<tr>
<td>9. PmIIEPLA\textsubscript{2}</td>
<td>0.1922</td>
<td>0.1977</td>
<td>0.1891</td>
<td>0.1883</td>
<td>0.1866</td>
<td>0.2272</td>
<td>0.3387</td>
<td>0.1916</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K\textsubscript{s} value</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PfIIEPLA\textsubscript{2}, PtIIEPLA\textsubscript{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PelIIEPLA\textsubscript{2}</td>
<td>0.0292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. OoIIEPLA\textsubscript{2}</td>
<td>0.1008</td>
<td>0.1120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. CmpIIEPLA\textsubscript{2}</td>
<td>0.1130</td>
<td>0.1247</td>
<td>0.1119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. VbIIEPLA\textsubscript{2}</td>
<td>0.2520</td>
<td>0.2664</td>
<td>0.2624</td>
<td>0.2660</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. LmIIEPLA\textsubscript{2} (Lei-1)</td>
<td>0.5220</td>
<td>0.5150</td>
<td>0.4756</td>
<td>0.5141</td>
<td>0.3912</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. DtIIEPLA\textsubscript{2} (Dis-1)</td>
<td>0.5639</td>
<td>0.5566</td>
<td>0.5267</td>
<td>0.5456</td>
<td>0.5048</td>
<td>0.2536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. OhIIEPLA\textsubscript{2}</td>
<td>0.5103</td>
<td>0.5033</td>
<td>0.5033</td>
<td>0.5119</td>
<td>0.5097</td>
<td>0.3162</td>
<td>0.2982</td>
<td></td>
</tr>
<tr>
<td>9. PmIIEPLA\textsubscript{2}</td>
<td>0.7437</td>
<td>0.7611</td>
<td>0.7836</td>
<td>0.8881</td>
<td>0.8096</td>
<td>1.0130</td>
<td>0.9223</td>
<td>0.8705</td>
</tr>
</tbody>
</table>

Figure 39. ヘビ類 IIE 型 PLA\textsubscript{2} 遺伝子の K\textsubscript{a}/K\textsubscript{s} 値

Cmp, *Crotalus michellii pyrrhus*; Vb, *Vipera berus berus*
ホンハブの IIE 型 PLA2 組換えタンパク質の大腸菌発現

(A) ホンハブの IIE 型 PLA2 組換えタンパク質コンストラクト配列。 (B) IPTG 誘導後の大腸菌粗抽出液の SDS-PAGE。
Figure 41. IIE型PLA2獲得のためのホンハブ粗毒に対するアフィニティークロマトグラフィーとウェスタンブロッティング

(A) ホンハブIIE型PLA2のC末端領域のペプチド抗体を用いたアフィニティークロマトグラフィー。
(B) アフィニティークロマトグラフィーで獲得した各フラクションのSDS-PAGE。
(C) アフィニティークロマトグラフィーで獲得した各フラクションのウェスタンプロット。
Figure 42. IIE 型 PLA₂ 遺伝子と IIA 型ハブ毒 PLA₂ 遺伝子のホンハブ染色体における局在

(A) IIE 型 PLA₂ 遺伝子 (PfIIEPLA₂) gDNA Probe (2,616 bp) を用いた FISH 解析。非特異的なシグナルを抑えるために、今回は断片化ゲノム DNA でマスクしている。黄色のシグナルは PfIIEPLA₂ を示す。

(B) IIE 型 PLA₂ 遺伝子 (PfIIEPLA₂) cDNA Probe (405 bp) と IIA 型 PLA₂ 遺伝子 (PfpgPLA 1a (A) [PfPLA 7]) cDNA Probe (530 bp) を用いた FISH 解析。赤色のシグナルは PfIIEPLA₂、黄色のシグナルは PfpgPLA 1a (A) をそれぞれ示す。
Figure 43. クサリヘビ科ヘビの IID・IIF 型 PLAr 遺伝子及びその外縁領域の同定
(A) ホンハブ IID 及び IIF 型 PLAr 遺伝子とその外縁領域のゲノム構造。矢頭は PCR プライマーを示す。
矢頭は PCR プライマーを示す。
(B) ゲノミック PCR で増幅された IID 型 PLAr 遺伝子断片、IIF 型 PLAr 遺伝子断片、MULI 遺伝子断片の泳動写真。
Figure 44. IID, IIF 型 PLA2 アミノ酸アラインメント

システイン残基は黒塗りで示す。四角括弧内には分泌型 PLA2 のグループを示す。
Figure 45. IID, IIF 型及び他分泌型 PLA2 の成熟タンパク質に基づく系統樹
A

<table>
<thead>
<tr>
<th>K_A/K_S ratio (K_A, K_S)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $PfIIDPLA_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. $PfIIDPLA_2$ (ψ)</td>
<td>0.1932 (0.0100, 0.0518)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. $OhIIDPLA_2$</td>
<td>0.4507 (0.1292, 0.2867)</td>
<td>0.3771 (0.1176, 0.3118)</td>
<td></td>
</tr>
<tr>
<td>4. $PmIIDPLA_2$</td>
<td>0.6112 (0.2752, 0.4503)</td>
<td>0.5746 (0.2753, 0.4792)</td>
<td>0.7409 (0.2698, 0.3641)</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>K_A/K_S ratio (K_A, K_S)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $PfIIFPLA_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. $OoIIFPLA_2$</td>
<td>0.4812 (0.0312, 0.0649)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. $VbIIFPLA_2$</td>
<td>0.4037 (0.0256, 0.0635)</td>
<td>0.5011 (0.0580, 0.0982)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. $OhIIEPLA_2$</td>
<td>0.1971 (0.0725, 0.3681)</td>
<td>0.2084 (0.0899, 0.4314)</td>
<td>0.2235 (0.0884, 0.3955)</td>
<td></td>
</tr>
<tr>
<td>5. $PmIIEPLA_2$</td>
<td>0.1203 (0.1006, 0.8362)</td>
<td>0.1587 (0.1259, 0.7935)</td>
<td>0.1555 (0.1140, 0.7335)</td>
<td>0.2251 (0.1366, 0.6070)</td>
</tr>
</tbody>
</table>

Figure 46. ヘビ類 IID, IIF 型 PLA2 遺伝子の K_A/K_S 値

(A) IID 型 PLA2 遺伝子の K_A/K_S 値。 (B) IIF 型 PLA2 遺伝子の K_A/K_S 値。
Figure 47. ホンハブとヒメハブの PLA2 遺伝子クラスター領域のゲノム構造
(A) ホンハブ PLA2 遺伝子クラスター NIS-1 クローン, (B) ヒメハブ PLA2 遺伝子クラスター。遺伝子構造図の下の番号と白枠はアクセッション No. とその領域を示す。

:遺伝子領域, :コーディング領域, :5' UTR, :3' UTR, :PeRTF。
Figure 48. クサリヘビ科ヘビの毒 PLA₂ 遺伝子クラスター領域の相同関係

黒極太線はホンハブ PLA₂ 遺伝子クラスターに対するヒメハブとサザンスペックルドラトルスネーク (Crotalus mitchellii pyrrhus) PLA₂ 遺伝子クラスターの相同領域を示す。赤、緑、紫色の各矢印は IIA 型、IID 型、IIF 型 PLA₂ 遺伝子を示す。青太線は IIE 型 PLA₂ 遺伝子に高い相同性を示す Chai 配列を示す。
Figure 49. クサリヘビ科ヘビの毒 PLA₂ 遺伝子クラスター領域に含まれる IIA 型 PLA₂ アミノ酸アラインメント

<table>
<thead>
<tr>
<th>参考文献</th>
<th>アミノ酸配列</th>
<th>理論的 pI/Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td>PfPLA 6</td>
<td>mrtlwimavllgvSlVQLWMKIEETKNFFPSYTFYGCGYGLLGGQGRPRDATDRCGLMHDECGYEMLTGKTKTDPPY</td>
<td>8.35 / 13913.95</td>
</tr>
<tr>
<td>OoPLA₂-o2</td>
<td>mrtlwaiavllgevSLVEFKRMIEETKNNFPPSYTFYGCGYGLLGGQGRPRDATDRCGLMHDECGYEMLTGKTKTDPPY</td>
<td>8.50 / 13948.96</td>
</tr>
<tr>
<td>CmpAncestralPLA₂</td>
<td>mrtlwaiavllgkSLVEFKRMIEETKNFFPSYTFYGCGYGLLGGQGRPRDATDRCGLMHDECGYEMLTGKTKTDPPY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>PfPLA 8 (PfPLA 1b (A))</td>
<td>mrtlwimavllgvQLHMQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>OoPLA₂-o1</td>
<td>mrtlwaiavllgvHLMQFETLIMIAGRSNWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>PfPLA 7 (PfPLA2)</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>CmpNeutral[Asp49]PLA₂</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>PfPLA 2 (PFBP)</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>OoPLA₂-o3</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>Cmp[Lys49]PLA₂</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>PfPLA 5 (PfPLA-B)</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>PfPLA 4 (PfPLA-N)</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>PfPLA 1</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
<tr>
<td>PfPLA 3</td>
<td>mrtlwimavllgvPGLQFENM1KIKVTSRGSIWYSSYGCGKKGEGRPQDPSSSCGFGHGGYKVTGCDPKDFFYY</td>
<td>7.87 / 13771.71</td>
</tr>
</tbody>
</table>

β-wing
Figure 50. クサリヘビ科ヘビの毒 PLA₂ 遺伝子クラスター領域に含まれる IIA 型毒 PLA₂ の成熟タンパク質に基づく系統分類
Figure 51. 祖先型 PLA₂, PfPLA 6 と OoPLA₂-o2, 遺伝子転写産物の発現組織分布

(A) 逆転写 PCR による祖先型 PLA₂, PfPLA 6 と Oo-PLA₂-o2, 遺伝子転写産物発現組織ボディーマップ。右数値は PCR サイクル数を示す。

(B) 半定量的発現量の比較グラフ。ACTB 遺伝子転写産物増幅バンドの蛍光強度に基づいた定量値を算定し、祖先型 PLA₂ 遺伝子転写産物増幅バンドの蛍光強度を定量値補正した後、ホンハブ毒腺での定量値を 1 として、各サンプル間での発現量を相対的に比較した。
A

<table>
<thead>
<tr>
<th>K_A/K_S ratio (K_A, K_S)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PfPLA 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. OoPLA2-02</td>
<td>0.2638 (0.0318 0.1205)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. OhIIA2PLA2</td>
<td>0.4713 (0.1301 0.2761)</td>
<td>0.4061 (0.1141 0.2808)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. PmIIA2PLA2</td>
<td>0.4365 (0.3143 0.7200)</td>
<td>0.4236 (0.3249 0.7671)</td>
<td>0.3781 (0.3125 0.8266)</td>
<td></td>
</tr>
<tr>
<td>5. CmpAncestral PLA2</td>
<td>0.2358 (0.0382 0.1622)</td>
<td>0.1005 (0.0189 0.1884)</td>
<td>0.2493 (0.1066 0.4276)</td>
<td>0.3356 (0.3265 0.9730)</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>K_A/K_S ratio (K_A, K_S)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PfPLA 8 (PfpgPLA 1b (A))</td>
<td></td>
</tr>
<tr>
<td>2. OoPLA2-01</td>
<td>0.2723 (0.0968 0.3555)</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>K_A/K_S ratio (K_A, K_S)</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PfPLA 2 (PBP-II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. OoPLA2-03</td>
<td>0.9652 (0.1504 0.1558)</td>
<td></td>
</tr>
<tr>
<td>3. Cmp[Lys49]PLA2</td>
<td>0.7765 (0.1402 0.1805)</td>
<td>0.7826 (0.1750 0.2236)</td>
</tr>
</tbody>
</table>

Figure 52. ヘビ類 IIA 型 PLA2 遺伝子の K_A/K_S 値

(A) Ancestral PLA2 遺伝子の K_A/K_S 値。 (B) Acidic[Asp49]PLA2 遺伝子の K_A/K_S 値。 (C) [Lys49]PLA2 遺伝子の K_A/K_S 値。
Figure 53. PfPLA 1, PfPLA 2, PfPLA 6 のコドンアラインメント

上段にアミノ酸、下段にそれに対応するコドンを記し、シグナルペプチドは小文字で示す。灰色の枠は第1, 3エクソンのコーディング領域を示す。赤字はそれぞれ高い相同性を示す領域を示す。
Figure 54. IIE 型 PLA2 遺伝子相同配列断片が散在するホンハブ PLA2 遺伝子クラスター

(A) ホンハブの IIE 型 PLA2 遺伝子中に存在するホンハブ PLA2 遺伝子クラスター相同配列断片。 (B) ホンハブ PLA2 遺伝子クラスター領域内に散在的に存在する IIE 型 PLA2 遺伝子相同断片。 □ : コーディング領域， □ : UTR， □ : ステムループ構造， □ : PcRTF 及びトランスポン配列， --- : Alpha, Beta, Chai 配列， * : CTCF モチーフ
Figure 55. IIE 型 PLA2 遺伝子とその相同配列断片 (Chai) 内に存在するステムループ構造

(A) ホンハブの IIE 型 PLA2 遺伝子の中で見出された 2 つのステムループ構造。左) 第 1 イントロンのステムループ構造、右) 第 2 イントロンのステムループ構造。

(B) ホンハブの IIE 型 PLA2 遺伝子の第 1 イントロンと Chai 配列中に存在するステムループ構造を形成する核酸配列アラインメント。

(C) ホンハブの IIE 型 PLA2 遺伝子の第 2 イントロンと Chai 配列中に存在するステムループ構造を形成する核酸配列アラインメント。
Figure 56. ホンハブの2つのIID型PLA2遺伝子により形成されるステムループ構造

(A) ホンハブのPfIIDPLA2, PfIIDPLA2(z)遺伝子の相補的塩基対結合により形成されるステムループ構造。緑文字はIID型PLA2遺伝子、枠内はコーディング領域を示す。
(B) ステムループ構造を仮想的に取り除いたホンハブの核酸配列とヒメハブの核酸配列のアラインメント。橙色のハサミマークの箇所に本来はステムループ構造がある。
ヒメハブで生じた２つのIID型PLA2遺伝子により形成されるステルーループ構造の欠失

Figure 57. ヒメハブで生じた2つのIID型PLA2遺伝子により形成されるステルーループ構造の欠失

→：遺伝子領域，□：コーディング領域，[]：5’UTR，○：3’UTR，□：pRTF。
Figure 58. 分泌型 PLA2 遺伝子クラスター領域のゲノム構造比較
Figure 59. 分泌型 PLA\(_2\) 成熟タンパク質に基づく系統解析
Figure 60. 分泌型 PLA₂ 成熟タンパク質に基づく系統解析
Figure 61. 生物の種の分岐プロセスと分泌型 PLA2 遺伝子クラスターの比較
Figure 62. 更新世陸橋仮説で示された
ハブ属とヤマハブ属ヘビの日本南西諸島への渡来

黒領域は現在の陸地、緑領域は170~150万年前に存在したと木村によって推定された陸地及び陸橋、赤矢印はハブ属とヤマハブ属ヘビの日本南西諸島への渡来ルートを示す。
Figure 63.ミトコンドリアクヌのND4、Cyto、16S及び12S rRNA遺伝子配列に基づいて推定された系統の分岐と化石記録による制約の設定

(A) 尤尤法で推定された系統分岐。赤数字で示したノードは化石記録による制約を施した箇所。黒字番号はノード番号。 (B) 今回の解析に使用した化石記録による制約と下限制約のコーシー分布。

<table>
<thead>
<tr>
<th>制約</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>B (1.689, 2.095)</td>
</tr>
<tr>
<td>②</td>
<td>B (0.9832, 1.130)</td>
</tr>
<tr>
<td>③</td>
<td>L (0.721, 0.1, 0.025)</td>
</tr>
<tr>
<td>④</td>
<td>B (0.9590, 1.005)</td>
</tr>
<tr>
<td>⑤</td>
<td>B (0.580, 0.640)</td>
</tr>
<tr>
<td>⑥</td>
<td>B (0.503, 0.554)</td>
</tr>
<tr>
<td>⑦</td>
<td>L (0.17, 0.2, 0.02, 0.025)</td>
</tr>
<tr>
<td>⑧</td>
<td>L (0.09, 0.4, 0.01, 0.025)</td>
</tr>
<tr>
<td>*</td>
<td>B (0.0085, 0.02)</td>
</tr>
</tbody>
</table>

【】のコーシー分布

[図の詳細な説明文]
Figure 64. 琉球弧の地理的隔離を制約として採用しない場合の蛇族分岐年代推定
紫色のバーは 95% 信頼区間 (Confidence interval) を示し、赤色矢頭は化石記録に基づいて制約を施した分岐点を示す。Mya, Million years ago.
Figure 65. 琉球弧の地理的隔離を制約として採用した場合の蛇族分岐年代推定
紫色のバーは95% 信頼区間 (Confidence interval) を示し、赤色矢頭は化石記録と琉球弧の地理的隔離に基づいて制約を施した分岐点を示す。Mya, Million years ago.
黒領域は現在の陸地、緑領域は過去に存在したと服部によって推定された陸地、赤領域は大陸沿岸部に当時存在した日本南西諸島の付加体、黄矢印は付加体の移動を示す。
出典：Hattori., 2014. Horizon 40, 12 (一部修正)。
Figure 67. トカラハブとホンハブの粗毒クロマトグラフィー分画プロファイル比較
Figure 68. [Lys49]PLA2 アイソザイムをコードする遺伝子の第3エクソンに対する一塩基多型 (SNP) ジェノタイピング

(A) SNP ジェノタイピングの TaqMan プローブとプライマー。☆は SNP, 矢頭は PCR プライマー, 六角形は TaqMan プローブをそれぞれ示す。
(B) トカラハブとホンハブに対する SNP ジェノタイピング。●はホンハブ (奄美大島), ○はトカラハブ, ▲はホンハブ (沖縄本島), △は BP-II 及び BP-III ポジティブコントロール, ■は BP-I ポジティブコントロールをそれぞれ示す。値は同じ測定を3回繰り返すことで求めた。
Figure 69. ホンハブとトカラハブの [Lys49]PLA2 アイソザム遺伝子のコピー数の比較

値は同じ測定を3回繰り返すことで求めた。バーは標準偏差を示す。
Figure 70. ホンハブとトカラハブのIIA型毒PLA₂アイソザム遺伝子のコピー数の比較
値は同じ測定を3回繰り返すことで求めた。バーは標準偏差を示す。
Figure 71. PtBP-I遺伝子とそこで見出したLINE-1

(A) PtBP-I遺伝子の第2イントロンに挿入しているLINE-1。□：CDS，△：UTR，☐：PrRTF，□：TSD。黒太線はLINEを示す。
(B) PtBP-I遺伝子の第2イントロンに挿入しているLINE-1がコードするReverse transcriptaseドメイン。
(C) Non-LTR型LINEのReverse transcriptaseドメインアミノ酸配列に基づく系統解析。

Ac, Anolis carolinensis; As, Acanthochelys spixii; Cb, Clarias batrachus; Ch, Crotalus horridus; Dv, Didelphis virginiana; Gg, Gallus gallus; Hs, Homo sapiens; Mm, Mus musculus; Ol, Oryzias latipes; Pf, P. flavoviridis; Pt, P. tokarensis; Ss, Sus scrofa; Tr, Takifugu rubripes; Va, Vipera ammodytes。
Figure 72. AID/APOBEC family protein binds to LINE-1 and inhibits duplication of LINE-1.

AID/APOBEC family protein attacks to CR1, and guanine nucleotides in CR1 are converted into adenine nucleotides (Hypermutation).
Figure 73. IIA 型毒 PLA2 遺伝子クラスターで見つかる PcRTF

PcRTF B’ は PiPLA-B’ の 3’ 下流の PcRTF, A, B, C は PiHdPLA の 5’ 上流の PcRTF 様断片を示す。

PcRT1, Acanthochelys spixii retrotransposon CR1-like LINE, complete sequence [AB005891].
Reverse transcriptase domain 4

Reverse transcriptase domain 5

Reverse transcriptase domain 6

Reverse transcriptase domain 7

Reverse transcriptase domain 8

Figure 73. IIA 型毒 PLA2 遺伝子クラスターで見つかる PcRTF

PcRTF B' は *PPLA-B* の 3' 下流の PcRTF, A, B, C は *PHDPLA* の 5' 上流の PcRTF 検断片を示す。

PcCR1, *Acanthocheilus spixii* retrotransposon CR1-like LINE, complete sequence [AB005891].

227
Figure 73. IIA型毒 PLA2遺伝子クラスターで見つかる PcRTF

PcRTF B’はPPLA-B’の3′下流のPcRTF、A、B、CはPIJDLA4の5′上流のPcRTF様断片を示す。

PsCR1, Acanthochelys spixii retrotransposon CR1-like LINE, complete sequence [AB005891].
Figure 74. ホンハブとヒメハブの膵臓におけるIB型PLA₂遺伝子プロモーター領域のメチル化状態解析

(A) ホンハブとヒメハブの膵臓におけるIB型PLA₂遺伝子プロモーター領域のメチル化状態解析。

(B) ホンハブとヒメハブの膵臓におけるIB型PLA₂遺伝子プロモーター領域のメチル化シトシンの割合

<table>
<thead>
<tr>
<th>CpG Position</th>
<th>60</th>
<th>85</th>
<th>188</th>
<th>200</th>
<th>214</th>
<th>231</th>
<th>301</th>
<th>304</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreas Me-CpG</td>
<td>53.1</td>
<td>68.8</td>
<td>6.2</td>
<td>12.5</td>
<td>21.9</td>
<td>18.8</td>
<td>31.2</td>
<td>25.0</td>
<td>29.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CpG Position</th>
<th>60</th>
<th>85</th>
<th>191</th>
<th>203</th>
<th>217</th>
<th>259</th>
<th>329</th>
<th>332</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreas Me-CpG</td>
<td>25.0</td>
<td>68.8</td>
<td>3.1</td>
<td>9.4</td>
<td>6.2</td>
<td>15.6</td>
<td>65.5</td>
<td>40.6</td>
<td>29.3%</td>
</tr>
</tbody>
</table>
ホンハブの各組織別 IB 型 PLA₂ 遺伝子プロモーター領域のメチル化状態解析

(A) 各組織別 IB 型膵 PLA₂ 遺伝子プロモーター領域のメチル化状態解析。●はメチル化シトシン、○は非メチル化シトシンを示す。□: CDS、△: UTR を示す。

(B) 各組織別 IB 型膵 PLA₂ 遺伝子プロモーター領域のメチル化シトシンの割合

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>86.7</td>
<td>63.3</td>
<td>93.3</td>
</tr>
<tr>
<td>85</td>
<td>86.0</td>
<td>86.7</td>
<td>93.3</td>
</tr>
<tr>
<td>188</td>
<td>80.0</td>
<td>70.0</td>
<td>86.7</td>
</tr>
<tr>
<td>200</td>
<td>90.0</td>
<td>73.3</td>
<td>83.3</td>
</tr>
<tr>
<td>214</td>
<td>86.7</td>
<td>36.7</td>
<td>40.0</td>
</tr>
<tr>
<td>231</td>
<td>86.0</td>
<td>40.0</td>
<td>83.3</td>
</tr>
<tr>
<td>301</td>
<td>80.0</td>
<td>70.0</td>
<td>40.0</td>
</tr>
<tr>
<td>304</td>
<td>84.2%</td>
<td>49.6%</td>
<td>69.2%</td>
</tr>
</tbody>
</table>

Figure 75. ホンハブの各組織別 IB 型 PLA₂ 遺伝子プロモーター領域のメチル化状態解析
Figure 76. IB 型 PLA2 遺伝子転写産物の発現組織分布

(A) 逆転写 PCR による IB 型 PLA2 遺伝子転写産物発現組織ボディーマップ。右数値は PCR サイクル数を示す。(B) 別個体で行った IB 型 PLA2 遺伝子発現の検証。(C) 半定量的発現量比較。ACTB 遺伝子増幅バンドの蛍光強度に基づいた定量値を算定し、IB 型 PLA2 遺伝子転写産物増幅バンドの蛍光強度を定量値補正した後、ホンハブ脾臓での定量値を 1 として、各サンプル間での発現量を相対的に比較した。
Figure 77. 塩基性 [Asp49]PLA2 遺伝子プロモーター領域のメチル化状態解析

(A) 各組織別塩基性 [Asp49]PLA2 遺伝子プロモーター領域のメチル化状態解析。●はメチル化シトシン, ○は非メチル化シトシンを示す。
(B) 各組織別塩基性 [Asp49]PLA2 遺伝子プロモーター領域のメチル化シトシンの割合
塩基性 [Asp^49]PLA_2 遺伝子プロモーター領域のメチル化状態解析

(A) 各組織別塩基性 [Asp^49]PLA_2 遺伝子プロモーター領域のメチル化状態解析。●はメチル化シトシン、○は非メチル化シトシンを示す。■ : CDS, □ : UTR を示す。
(B) 各組織別塩基性 [Asp^49]PLA_2 遺伝子プロモーター領域のメチル化シトシンの割合
Figure 79. *PfPLA 6* 遺伝子プロモーター領域のメチル化状態解析

(A) 各組織別 *PfPLA 6* 遺伝子プロモーター領域のメチル化状態解析。●はメチル化シトシン、○は非メチル化シトシンを示す。■：CDS、□：UTRを示す。

(B) 各組織別 *PfPLA 6* 遺伝子プロモーター領域のメチル化シトシンの割合
Figure 80. IB型PLA2遺伝子プロモーター領域とそこに結合すると予測された転写因子群

CpGは赤色で示し、メチル化状態解析を行った領域を太字で示す。矢印は転写開始点、青背景はETSファミリー、紫背景はSTATファミリー、黒枠はTATA box結合タンパク質、それぞれの結合サイトを示す。赤波線はホンハブとヒメハブで異なる転写因子が結合すると予測された場所を示す。
Figure 81. ホンハブ IIA 型 PLA2 遺伝子アイソザイムのプロモーター領域とそこに結合すると予測された転写因子群

CpGは赤色で示し、メチル化状態解析を行った領域を太字で示す。矢印は転写開始点、青背景はESE-3型遺伝子アイソザイムの结合サイトを示す。
<table>
<thead>
<tr>
<th>タイプ</th>
<th>グループ</th>
<th>サブグループ</th>
<th>分子量 (kDa)</th>
<th>触媒残基</th>
</tr>
</thead>
<tbody>
<tr>
<td>分泌型ホスホリパーゼ A2 (sPLA₂)</td>
<td>I</td>
<td>A, B</td>
<td>13-15</td>
<td>His/Asp</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>A, B, C, D, E, F</td>
<td>13-17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td></td>
<td>15-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XI</td>
<td>A, B</td>
<td>12-13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XII</td>
<td>A, B</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XIII</td>
<td></td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XIV</td>
<td></td>
<td>13-19</td>
<td></td>
</tr>
<tr>
<td>細胞質型ホスホリパーゼ A2 (cPLA₂)</td>
<td>IV</td>
<td>A(α), B(β), C(γ), D(δ), E(ε), F(ζ)</td>
<td>60-114</td>
<td>Ser/Asp</td>
</tr>
<tr>
<td>Ca²⁺非依存型ホスホリパーゼ A2 (iPLA₂)</td>
<td>VI</td>
<td>A(β), B(γ), C(δ), D(ε), E(ζ), F(η)</td>
<td>84-90</td>
<td>Ser/Asp</td>
</tr>
<tr>
<td>血小板活性化因子アセチルヒドラーゼ (PAF-AH)</td>
<td>VII</td>
<td>A(Lp-PLA₂), B(PAF-AH II)</td>
<td>40-45</td>
<td>Ser/His/Asp</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>A(α₁), B(α₂), β</td>
<td>26-40</td>
<td></td>
</tr>
<tr>
<td>リソソーム型ホスホリパーゼ A2 (LPLA₂)</td>
<td>XV</td>
<td></td>
<td>45</td>
<td>Ser/His/Asp</td>
</tr>
<tr>
<td>アディポサイト型ホスホリパーゼ A2 (AdPLA)</td>
<td>XVI</td>
<td></td>
<td>18</td>
<td>His/Cys</td>
</tr>
</tbody>
</table>

Table 1. ホスホリパーゼ A₂ スーパーファミリー

出典: Dennis et al., 2011. Chem. Rev. 111, 6130-6185（一部修正）.
<table>
<thead>
<tr>
<th>生物種 [発現組織]</th>
<th>分子量 (kDa)</th>
<th>ジスルフィド結合</th>
<th>出典</th>
</tr>
</thead>
</table>
Poster_1
Tree Node
t_n56
t_n57
t_n58
t_n59
t_n60
t_n61
t_n62
t_n63
t_n64
t_n65
t_n66
t_n67
t_n68
t_n69
t_n70
t_n71
t_n72
t_n73
t_n74
t_n75
t_n76
t_n77
t_n78
t_n79
t_n80
t_n81
t_n82
t_n83
t_n84
t_n85
t_n86
t_n87
t_n88
t_n89
t_n90
t_n91
t_n92
t_n93
t_n94
t_n95
t_n96
t_n97
t_n98
t_n99
t_n100
t_n101
t_n102
t_n103
t_n104
t_n105
t_n106
t_n107
t_n108
t_n109
mu1
mu2
mu3
mu4
sigma2_1
sigma2_2
sigma2_3
sigma2_4
lnL

mean
1.7207
1.1713
0.6500
1.1284
0.9445
0.7622
0.7534
0.4976
0.7129
0.5110
0.0636
0.6667
0.5479
0.5218
0.4659
0.4318
0.3764
0.2960
0.2072
0.1786
0.3250
0.2763
0.2412
0.1365
0.0101
0.3639
0.3136
0.2587
0.2246
0.1737
0.1276
0.1027
0.0768
0.1186
0.0757
0.0630
0.0099
0.2123
0.1139
0.2028
0.1735
0.1264
0.0998
0.0914
0.1259
0.0871
0.0428
0.0236
0.0231
0.2912
0.1985
0.6222
0.5877
0.6385
0.6261
0.9733
0.2447
0.3177
0.2063
0.2179
0.3451
0.3896
-202.8912

95% Equal-tail CI
1.6589, 1.8426
0.8249, 1.6018
0.4445, 0.8987
1.1058, 1.1480
0.9347, 0.9645
0.7131, 0.8263
0.7015, 0.8198
0.3182, 0.6611
0.6702, 0.7634
0.2944, 0.6835
0.0385, 0.0984
0.6318, 0.7093
0.5282, 0.5570
0.4922, 0.5439
0.4315, 0.4969
0.3915, 0.4692
0.3225, 0.4261
0.2380, 0.3534
0.1591, 0.2621
0.1283, 0.2312
0.2717, 0.3761
0.2211, 0.3307
0.1905, 0.2962
0.0978, 0.1857
0.0046, 0.0182
0.3226, 0.4059
0.2718, 0.3578
0.2231, 0.3014
0.2019, 0.2618
0.1414, 0.2113
0.1049, 0.1551
0.0766, 0.1312
0.0506, 0.1063
0.0955, 0.1458
0.0561, 0.0980
0.0445, 0.0848
0.0046, 0.0177
0.1892, 0.2468
0.0776, 0.1560
0.1807, 0.2348
0.1548, 0.1999
0.1212, 0.1348
0.0814, 0.1159
0.0706, 0.1097
0.0989, 0.1585
0.0640, 0.1148
0.0284, 0.0602
0.0138, 0.0365
0.0127, 0.0379
0.2378, 0.3425
0.1479, 0.2524
0.5965, 0.6572
0.5767, 0.6114
0.4707, 0.7903
0.5443, 0.7211
0.8474, 1.1177
0.2040, 0.2969
0.2605, 0.3891
0.1309, 0.3069
0.1387, 0.3252
0.1897, 0.5725
0.2382, 0.5940
-230.127, -176.659

95% HPD CI
1.6448, 1.8193
0.8338, 1.6084
0.4194, 0.8678
1.1065, 1.1485
0.9328, 0.9609
0.7112, 0.8232
0.6993, 0.8162
0.3238, 0.6651
0.6663, 0.7585
0.3027, 0.6878
0.0355, 0.0934
0.6290, 0.7052
0.5313, 0.5589
0.4958, 0.5464
0.4327, 0.4978
0.3916, 0.4693
0.3256, 0.4282
0.2404, 0.3555
0.1584, 0.2609
0.1256, 0.2280
0.2715, 0.3756
0.2195, 0.3287
0.1906, 0.2962
0.0958, 0.1825
0.0039, 0.0171
0.3223, 0.4054
0.2708, 0.3564
0.2218, 0.2989
0.2001, 0.2569
0.1419, 0.2116
0.1040, 0.1534
0.0761, 0.1305
0.0495, 0.1050
0.0952, 0.1450
0.0554, 0.0970
0.0445, 0.0848
0.0040, 0.0166
0.1878, 0.2439
0.0748, 0.1524
0.1789, 0.2315
0.1540, 0.1979
0.1207, 0.1340
0.0820, 0.1162
0.0706, 0.1097
0.0979, 0.1565
0.0623, 0.1123
0.0275, 0.0589
0.0132, 0.0355
0.0118, 0.0361
0.2394, 0.3435
0.1498, 0.2542
0.5943, 0.6534
0.5752, 0.6080
0.4686, 0.7878
0.5410, 0.7161
0.8402, 1.1088
0.2011, 0.2915
0.2569, 0.3837
0.1223, 0.2950
0.1338, 0.3183
0.1745, 0.5488
0.2214, 0.5697
-230.132, -176.703

HPD-CI-width
0.1745
0.7746
0.4485
0.0420
0.0280
0.1119
0.1169
0.3412
0.0922
0.3852
0.0578
0.0762
0.0276
0.0506
0.0651
0.0777
0.1027
0.1151
0.1025
0.1024
0.1041
0.1092
0.1056
0.0867
0.0131
0.0831
0.0855
0.0771
0.0568
0.0697
0.0494
0.0545
0.0555
0.0498
0.0416
0.0403
0.0126
0.0561
0.0776
0.0526
0.0440
0.0133
0.0342
0.0391
0.0586
0.0500
0.0314
0.0224
0.0243
0.1041
0.1044
0.0590
0.0329
0.3193
0.1751
0.2685
0.0904
0.1268
0.1727
0.1846
0.3742
0.3484
53.429

Jnode

108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55

Table 3. 琉球弧の地理的隔離を制約として採用しない場合の
蛇族分岐年代推定
信頼区間 (CI, Confidence interval), 最高密度区間 (HPD, Highest Posterior Density)。各ノード番号は Figure 63 に従う。
各年代時間は 1 億年を 1.000 と設定し表記している。

239


Table 4. 琉球弧の地理的隔離を制約として採用した場合の蛇族分岐年代推定

信頼区間 (CI, Confidence interval), 最高密度区間 (HPD, Highest Posterior Density)。各ノード番号は Figure 63 に従う。

各年代は 1 億年を 1,000 と設定し表記している。
Table 5. 日本南西諸島とその周辺に棲息するマムシ亜科ヘビの分岐年代推定

推定された分岐年代は Figure 64, 65 及び Table 3, 4 に基づき、四角括弧内の分岐年代は Figure 64 と Table 3 での値である。

<table>
<thead>
<tr>
<th>分岐年代 (95% 信頼区間)</th>
<th>類群</th>
<th>P. flavoviridis, P. tokarensis vs. (vs.) P. murosumatopus, P. maolanensis, P. elegans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,190 万年前 (1,474~957 万年前)</td>
<td></td>
<td>P. flavoviridis, P. tokarensis vs. (vs.) P. murosumatopus, P. maolanensis, P. elegans</td>
</tr>
<tr>
<td>[1,186 万年前 (1,458~955 万年前)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,140 万年前 (1,565~770 万年前)</td>
<td></td>
<td>O. okinavensis vs. Trimeresurus gracilis</td>
</tr>
<tr>
<td>[1,139 万年前 (1,560~776 万年前)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>760 万年前 (995~567 万年前)</td>
<td></td>
<td>P. murosumatopus vs. P. maolanensis, P. elegans</td>
</tr>
<tr>
<td>[757 万年前 (980~561 万年前)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>633 万年前 (855~443 万年前)</td>
<td></td>
<td>P. maolanensis vs. P. elegans</td>
</tr>
<tr>
<td>[630 万年前 (848~445 万年前)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117 万年前 (181~83 万年前)</td>
<td></td>
<td>P. flavoviridis vs. P. tokarensis</td>
</tr>
<tr>
<td>[99 万年前 (177~46 万年前)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Azemiops feae</td>
<td>○</td>
<td>N.D.</td>
</tr>
<tr>
<td>Protobothrops mucrosquamatus</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Protobothrops flavoviridis</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Gloydius halys</td>
<td>○</td>
<td>N.D.</td>
</tr>
<tr>
<td>Trimeresurus gracilis</td>
<td>○</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ovophis okinavensis</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>Agkistrodon piscivorus</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Crotalus mitchellii pyrrhus</td>
<td>N.D.</td>
<td>○</td>
</tr>
<tr>
<td>Crotalus horridus</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Table 6. クサリヘビ科ヘビの IIA 型 PLA2 の有無

N.D. は核酸及びタンパク質データベースにデータセットが存在しなかった場合、× はゲノム構造中から完全に遺伝子が欠失している場合、○は核酸及びタンパク質データベースのどちらか一方に該当配列が存在した場合、◎は核酸及びタンパク質データベースのどちら共に該当配列が存在した場合を示す。
Table 7. ホンハブ IB 型 PLA2 遺伝子プロモーター領域に結合すると予測された転写因子群

ヒトとマウスの膵臓 EST データベースより抽出された転写因子群。
転写因子の名称, ファミリー名, ヒットしたデータセットのアクセッション No., Score, E-Value を示す。
Table 8. ヒメハブ IB 型 PLA₂ 遺伝子プロモーター領域に結合すると予測された転写因子群

ヒトとマウスの膵臓 EST データベースより抽出された転写因子群。
転写因子の名称，ファミリー名，ヒットしたデータセットのアクセスion No., Score, E-Value を示す。

<table>
<thead>
<tr>
<th>Name</th>
<th>Family</th>
<th>BLAST Hit sequence</th>
<th>Score</th>
<th>E-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl6</td>
<td>BetaBeta-zinc Finger</td>
<td>BQ631869</td>
<td>287</td>
<td>7e-91</td>
</tr>
<tr>
<td>EHF</td>
<td>ETS</td>
<td>CV675730</td>
<td>266</td>
<td>7e-88</td>
</tr>
<tr>
<td>ELK1</td>
<td>ETS</td>
<td>BI835063</td>
<td>344</td>
<td>4e-116</td>
</tr>
<tr>
<td>ELK4</td>
<td>ETS</td>
<td>CK821104</td>
<td>217</td>
<td>5e-67</td>
</tr>
<tr>
<td>Erg</td>
<td>ETS</td>
<td>BI713036</td>
<td>382</td>
<td>2e-130</td>
</tr>
<tr>
<td>Ets1</td>
<td>ETS</td>
<td>CK819846</td>
<td>226</td>
<td>1e-70</td>
</tr>
<tr>
<td>FEV</td>
<td>ETS</td>
<td>BI438572</td>
<td>277</td>
<td>3e-93</td>
</tr>
<tr>
<td>FLI1</td>
<td>ETS</td>
<td>BI713036</td>
<td>238</td>
<td>8e-75</td>
</tr>
<tr>
<td>Foxo1</td>
<td>Forkhead</td>
<td>CV675513</td>
<td>368</td>
<td>2e-122</td>
</tr>
<tr>
<td>HLF</td>
<td>Leucine Zipper</td>
<td>BM021389</td>
<td>181</td>
<td>3e-55</td>
</tr>
<tr>
<td>Hift</td>
<td>GATA</td>
<td>AA159301</td>
<td>250</td>
<td>1e-76</td>
</tr>
<tr>
<td>INSM1</td>
<td>BetaBeta-zinc Finger</td>
<td>BM503821</td>
<td>182</td>
<td>1e-53</td>
</tr>
<tr>
<td>JUN::FOS</td>
<td>Leucine Zipper</td>
<td>CA772039</td>
<td>399</td>
<td>6e-138</td>
</tr>
<tr>
<td>MafB</td>
<td>Leucine Zipper</td>
<td>BI466203</td>
<td>201</td>
<td>3e-62</td>
</tr>
<tr>
<td>MZF1_5-13</td>
<td>BetaBeta-zinc Finger</td>
<td>BG656540</td>
<td>354</td>
<td>9e-117</td>
</tr>
<tr>
<td>NFIC</td>
<td>NFI CCAAT-binding</td>
<td>BP323089</td>
<td>388</td>
<td>1e-132</td>
</tr>
<tr>
<td>Nkx2-5</td>
<td>Homeo</td>
<td>BI834117</td>
<td>287</td>
<td>5e-95</td>
</tr>
<tr>
<td>Nr5a2</td>
<td>Hormone-nuclear Receptor</td>
<td>CK819760</td>
<td>388</td>
<td>7e-132</td>
</tr>
<tr>
<td>RFX5</td>
<td>RFX</td>
<td>BM313205</td>
<td>201</td>
<td>7e-60</td>
</tr>
<tr>
<td>SOX10</td>
<td>High Mobility Group box (HMG)</td>
<td>BE226257</td>
<td>224</td>
<td>9e-71</td>
</tr>
<tr>
<td>Spi1</td>
<td>ETS</td>
<td>BM919205</td>
<td>219</td>
<td>8e-68</td>
</tr>
<tr>
<td>SPIB</td>
<td>ETS</td>
<td>BP324469</td>
<td>223</td>
<td>2e-71</td>
</tr>
<tr>
<td>STAT1</td>
<td>STAT</td>
<td>AA069801</td>
<td>319</td>
<td>3e-103</td>
</tr>
<tr>
<td>STAT3</td>
<td>STAT</td>
<td>CA772093</td>
<td>432</td>
<td>4e-145</td>
</tr>
<tr>
<td>Stat4</td>
<td>STAT</td>
<td>BM918571</td>
<td>478</td>
<td>4e-162</td>
</tr>
<tr>
<td>Stat6</td>
<td>STAT</td>
<td>BI521131</td>
<td>216</td>
<td>4e-63</td>
</tr>
<tr>
<td>TEAD1</td>
<td>Homeo</td>
<td>BM918968</td>
<td>321</td>
<td>3e-105</td>
</tr>
<tr>
<td>Tcf12</td>
<td>Helix-Loop-Helix</td>
<td>CF579929</td>
<td>208</td>
<td>3e-60</td>
</tr>
<tr>
<td>THAP1</td>
<td>THAP</td>
<td>BI833227</td>
<td>363</td>
<td>1e-125</td>
</tr>
</tbody>
</table>
Table 9. ホンハブ IB 型 PLA2 遺伝子プロモーター領域に結合すると予測された転写因子群

青背景は ETS ファミリー、紫背景は STAT ファミリーを示す。黒枠は TATA box 結合タンパク質、青枠は EHF をそれぞれ示す。
<table>
<thead>
<tr>
<th>Name</th>
<th>Score</th>
<th>Position</th>
<th>Strand</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLF</td>
<td>7.139</td>
<td>83-94</td>
<td>-</td>
<td>TATTCCGCATTG</td>
</tr>
<tr>
<td>MZF1 5-13</td>
<td>6.564</td>
<td>83-92</td>
<td>+</td>
<td>CAAACCGAGA</td>
</tr>
<tr>
<td>Hnf5</td>
<td>7.3</td>
<td>90-99</td>
<td>-</td>
<td>GAACCTTNTT</td>
</tr>
<tr>
<td>Nkx2-5</td>
<td>6.961</td>
<td>92-98</td>
<td>+</td>
<td>ATAATTTT</td>
</tr>
<tr>
<td>SPIR</td>
<td>9.203</td>
<td>86-92</td>
<td>+</td>
<td>TCCGGAA</td>
</tr>
<tr>
<td>Sp11</td>
<td>6.77</td>
<td>93-107</td>
<td>-</td>
<td>CAGGGAGGAACTTA</td>
</tr>
<tr>
<td>FEV</td>
<td>7.144</td>
<td>95-102</td>
<td>-</td>
<td>AAAGAAGT</td>
</tr>
<tr>
<td>Stat4</td>
<td>7.172</td>
<td>97-110</td>
<td>-</td>
<td>CTACAGGAAGGA</td>
</tr>
<tr>
<td>STAT3</td>
<td>6.589</td>
<td>100-110</td>
<td>-</td>
<td>CTACAGGGAG</td>
</tr>
<tr>
<td>Sox10</td>
<td>6.636</td>
<td>109-114</td>
<td>+</td>
<td>CTTTCT</td>
</tr>
<tr>
<td>Thap1</td>
<td>7.38</td>
<td>123-131</td>
<td>-</td>
<td>CTCCCAACA</td>
</tr>
<tr>
<td>Nfic</td>
<td>7.587</td>
<td>125-130</td>
<td>+</td>
<td>TGGAAA</td>
</tr>
<tr>
<td>Nfic</td>
<td>8.396</td>
<td>135-141</td>
<td>+</td>
<td>CGGCA</td>
</tr>
<tr>
<td>Hnf5</td>
<td>6.619</td>
<td>139-148</td>
<td>+</td>
<td>GCACATTTCCT</td>
</tr>
<tr>
<td>Stat3</td>
<td>8.878</td>
<td>144-154</td>
<td>-</td>
<td>TGGCTCTGCAA</td>
</tr>
<tr>
<td>FoxO1</td>
<td>7.051</td>
<td>150-160</td>
<td>-</td>
<td>AGGCTTTTGCT</td>
</tr>
<tr>
<td>Ets1</td>
<td>6.675</td>
<td>170-184</td>
<td>+</td>
<td>TCTCTCTCCTGGAAG</td>
</tr>
<tr>
<td>Elk4</td>
<td>7.902</td>
<td>171-181</td>
<td>+</td>
<td>CTCTCTCCTGAG</td>
</tr>
<tr>
<td>Erg</td>
<td>9.111</td>
<td>171-181</td>
<td>-</td>
<td>CCAGGAAAGAG</td>
</tr>
<tr>
<td>Flk1</td>
<td>10.006</td>
<td>171-181</td>
<td>-</td>
<td>CCAGGAAAGAG</td>
</tr>
<tr>
<td>Ehf</td>
<td>13.827</td>
<td>173-180</td>
<td>+</td>
<td>CCCTCTCTGAG</td>
</tr>
<tr>
<td>Fev</td>
<td>7.905</td>
<td>173-180</td>
<td>-</td>
<td>CAGGAAGG</td>
</tr>
<tr>
<td>Stat6</td>
<td>15.858</td>
<td>171-184</td>
<td>-</td>
<td>CTCTCTGGAAGAAG</td>
</tr>
<tr>
<td>Stat1</td>
<td>14.938</td>
<td>174-184</td>
<td>-</td>
<td>CTCTCTGGAAG</td>
</tr>
<tr>
<td>Stat1</td>
<td>12.228</td>
<td>174-184</td>
<td>+</td>
<td>CTCTCTGGAAG</td>
</tr>
<tr>
<td>Stat3</td>
<td>13.85</td>
<td>174-184</td>
<td>-</td>
<td>CTCTCTGGAAG</td>
</tr>
<tr>
<td>Stat3</td>
<td>14.654</td>
<td>174-184</td>
<td>+</td>
<td>CTCTCTGGAAG</td>
</tr>
<tr>
<td>Stat4</td>
<td>12.041</td>
<td>174-187</td>
<td>+</td>
<td>CTCTCTGGAAGTA</td>
</tr>
<tr>
<td>Thap1</td>
<td>7.31</td>
<td>176-184</td>
<td>-</td>
<td>CTTCCTGAG</td>
</tr>
<tr>
<td>Jun/fos</td>
<td>6.507</td>
<td>186-192</td>
<td>+</td>
<td>TGATCG</td>
</tr>
<tr>
<td>Tbp</td>
<td>7.478</td>
<td>204-218</td>
<td>-</td>
<td>GAATAAACCCTCAGGT</td>
</tr>
<tr>
<td>Elk1</td>
<td>6.658</td>
<td>213-222</td>
<td>-</td>
<td>aaacCGGTAG</td>
</tr>
<tr>
<td>Nkx2-5</td>
<td>7.281</td>
<td>245-251</td>
<td>-</td>
<td>ATAGAG</td>
</tr>
<tr>
<td>Mzf1 5-13</td>
<td>7.593</td>
<td>251-260</td>
<td>-</td>
<td>CGAGCGAGA</td>
</tr>
<tr>
<td>Tcf12</td>
<td>6.727</td>
<td>258-268</td>
<td>-</td>
<td>CCAGGTCGCG</td>
</tr>
<tr>
<td>Tcf12</td>
<td>11.651</td>
<td>259-269</td>
<td>+</td>
<td>CGGAGGTCGG</td>
</tr>
<tr>
<td>Rfx5</td>
<td>7.144</td>
<td>263-277</td>
<td>-</td>
<td>AACCTCTGCGGAG</td>
</tr>
<tr>
<td>Nrs2a</td>
<td>11.534</td>
<td>266-280</td>
<td>+</td>
<td>gGGCCCTGAGGTCTTA</td>
</tr>
<tr>
<td>Hnf5</td>
<td>7.071</td>
<td>268-277</td>
<td>-</td>
<td>AACCTTCGCC</td>
</tr>
<tr>
<td>Nfic</td>
<td>7.969</td>
<td>268-273</td>
<td>-</td>
<td>TGGGCC</td>
</tr>
<tr>
<td>Sox10</td>
<td>7.094</td>
<td>281-286</td>
<td>-</td>
<td>CTTTCT</td>
</tr>
<tr>
<td>Tbp</td>
<td>5.194</td>
<td>287-301</td>
<td>+</td>
<td>CTATAAAGGCTGAAG</td>
</tr>
</tbody>
</table>

Table 10. ヒメハブ IB 型 PLA2 遺伝子プロモーター領域に結合すると予測された転写因子群

青背景は ETS ファミリー、紫背景は STAT ファミリーを示す。黒枠は TATA box 結合タンパク質、青枠は EHF をそれぞれ示す。
<table>
<thead>
<tr>
<th>Name</th>
<th>Family</th>
<th>BLAST Hit isotig</th>
<th>Score</th>
<th>E-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARID3A</td>
<td>Arid</td>
<td>isotig17357</td>
<td>258</td>
<td>6e-82</td>
</tr>
<tr>
<td>Bcl6</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig09033</td>
<td>309</td>
<td>7e-99</td>
</tr>
<tr>
<td>Bhlhe40</td>
<td>Helix-Loop-Helix</td>
<td>isotig04518</td>
<td>468</td>
<td>7e-153</td>
</tr>
<tr>
<td>CTCF</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig05442</td>
<td>718</td>
<td>0.0</td>
</tr>
<tr>
<td>E2F3</td>
<td>E2F</td>
<td>isotig12623</td>
<td>176</td>
<td>2e-51</td>
</tr>
<tr>
<td>E2F6</td>
<td>E2F</td>
<td>isotig12623</td>
<td>269</td>
<td>8e-90</td>
</tr>
<tr>
<td>EBF1</td>
<td>Helix-Loop-Helix</td>
<td>isotig21664</td>
<td>299</td>
<td>3e-98</td>
</tr>
<tr>
<td>EGR1</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig13881</td>
<td>303</td>
<td>9e-100</td>
</tr>
<tr>
<td>EHF</td>
<td>ETS</td>
<td>isotig05227</td>
<td>503</td>
<td>3e-175</td>
</tr>
<tr>
<td>ELF1</td>
<td>ETS</td>
<td>isotig02486</td>
<td>630</td>
<td>0.0</td>
</tr>
<tr>
<td>ELF5</td>
<td>ETS</td>
<td>isotig01649</td>
<td>412</td>
<td>2e-136</td>
</tr>
<tr>
<td>ELK4</td>
<td>ETS</td>
<td>isotig03088</td>
<td>182</td>
<td>4e-51</td>
</tr>
<tr>
<td>FLI1</td>
<td>ETS</td>
<td>isotig15906</td>
<td>317</td>
<td>9e-107</td>
</tr>
<tr>
<td>GABPA</td>
<td>ETS</td>
<td>isotig08565</td>
<td>437</td>
<td>3e-153</td>
</tr>
<tr>
<td>HNF4A</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig05389</td>
<td>264</td>
<td>1e-80</td>
</tr>
<tr>
<td>HNF4G</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig05389</td>
<td>261</td>
<td>3e-80</td>
</tr>
<tr>
<td>MAX</td>
<td>Helix-Loop-Helix</td>
<td>isotig06931</td>
<td>244</td>
<td>1e-79</td>
</tr>
<tr>
<td>Meis1</td>
<td>Homeodomain</td>
<td>isotig23346</td>
<td>244</td>
<td>7e-80</td>
</tr>
<tr>
<td>Myc</td>
<td>Helix-Loop-Helix</td>
<td>isotig09553</td>
<td>244</td>
<td>3e-77</td>
</tr>
<tr>
<td>MZF1_1-4</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig00570</td>
<td>292</td>
<td>2e-87</td>
</tr>
<tr>
<td>MZF1_5-13</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig00570</td>
<td>292</td>
<td>2e-87</td>
</tr>
<tr>
<td>NFATC2</td>
<td>Rel</td>
<td>isotig03142</td>
<td>267</td>
<td>3e-78</td>
</tr>
<tr>
<td>NFIC</td>
<td>NFI CCAAT-binding</td>
<td>isotig04628</td>
<td>495</td>
<td>4e-164</td>
</tr>
<tr>
<td>NFKB1</td>
<td>Rel</td>
<td>isotig10963</td>
<td>236</td>
<td>9e-71</td>
</tr>
<tr>
<td>NR2F1</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig17626</td>
<td>268</td>
<td>4e-88</td>
</tr>
<tr>
<td>NR4A2</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig07234</td>
<td>428</td>
<td>6e-145</td>
</tr>
<tr>
<td>REL</td>
<td>Rel</td>
<td>isotig12550</td>
<td>303</td>
<td>2e-98</td>
</tr>
<tr>
<td>RELA</td>
<td>Rel</td>
<td>isotig12550</td>
<td>229</td>
<td>1e-70</td>
</tr>
<tr>
<td>Rfx1</td>
<td>RFX</td>
<td>isotig13306</td>
<td>404</td>
<td>9e-134</td>
</tr>
<tr>
<td>RUNX1</td>
<td>Runt</td>
<td>isotig18837</td>
<td>305</td>
<td>3e-102</td>
</tr>
<tr>
<td>RUNX2</td>
<td>Runt</td>
<td>isotig18837</td>
<td>285</td>
<td>1e-93</td>
</tr>
<tr>
<td>Rxa</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig05389</td>
<td>614</td>
<td>0.0</td>
</tr>
<tr>
<td>SMAD2::SMAD3::SMAD4</td>
<td>MH1</td>
<td>isotig17549</td>
<td>259</td>
<td>4e-84</td>
</tr>
<tr>
<td>SP1</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig05381</td>
<td>375</td>
<td>3e-119</td>
</tr>
<tr>
<td>SP2</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig18337</td>
<td>254</td>
<td>2e-80</td>
</tr>
<tr>
<td>SREBF1</td>
<td>Helix-Loop-Helix</td>
<td>isotig04460</td>
<td>903</td>
<td>0.0</td>
</tr>
<tr>
<td>STAT2::STAT1</td>
<td>STAT</td>
<td>isotig09154</td>
<td>282</td>
<td>2e-87</td>
</tr>
<tr>
<td>Tcf12</td>
<td>Helix-Loop-Helix</td>
<td>isotig06344</td>
<td>248</td>
<td>1e-73</td>
</tr>
<tr>
<td>Tcf3</td>
<td>Helix-Loop-Helix</td>
<td>isotig06071</td>
<td>509</td>
<td>2e-175</td>
</tr>
<tr>
<td>TCF7L2</td>
<td>High Mobility Group (Box)</td>
<td>isotig06071</td>
<td>410</td>
<td>4e-136</td>
</tr>
<tr>
<td>TFAP2A</td>
<td>Helix-Loop-Helix</td>
<td>isotig06952</td>
<td>656</td>
<td>0.0</td>
</tr>
<tr>
<td>TFAP2C</td>
<td>Helix-Loop-Helix</td>
<td>isotig06952</td>
<td>403</td>
<td>5e-137</td>
</tr>
<tr>
<td>USF1</td>
<td>Helix-Loop-Helix</td>
<td>isotig10551</td>
<td>336</td>
<td>5e-115</td>
</tr>
<tr>
<td>YY1</td>
<td>BetaBetaAlpha-zinc finger</td>
<td>isotig08015</td>
<td>338</td>
<td>2e-113</td>
</tr>
<tr>
<td>ZNF263</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig00570</td>
<td>276</td>
<td>4e-82</td>
</tr>
<tr>
<td>ZNF354C</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig00570</td>
<td>334</td>
<td>5e-105</td>
</tr>
</tbody>
</table>

Table 11. ホンハブ塩基性 [Asp]\(^{49}\)PLA\(_2\) 遺伝子プロモーター領域に結合すると予測された転写因子群

ホンハブの毒腺 EST データベースより抽出された転写因子群。
転写因子の名称、ファミリー名、ヒットしたデータセットのアクセッションNo., Score, E-Value を示す。
ホンハブの毒腺 EST データベースより抽出された転写因子群。
転写因子の名称, ファミリー名, ヒットしたデータセットのアクセッション No., Score, E-Value を示す。

<table>
<thead>
<tr>
<th>Name</th>
<th>Family</th>
<th>BLAST Hit isotig No.</th>
<th>Score</th>
<th>E-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARID3A</td>
<td>Arid</td>
<td>isotig17357</td>
<td>258</td>
<td>6e-82</td>
</tr>
<tr>
<td>Bhlhe40</td>
<td>Helix-Loop-Helix</td>
<td>isotig04518</td>
<td>468</td>
<td>7e-153</td>
</tr>
<tr>
<td>E2F6</td>
<td>E2F</td>
<td>isotig12623</td>
<td>269</td>
<td>8e-90</td>
</tr>
<tr>
<td>EBF1</td>
<td>Helix-Loop-Helix</td>
<td>isotig21664</td>
<td>299</td>
<td>3e-98</td>
</tr>
<tr>
<td>EGR1</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig13881</td>
<td>303</td>
<td>9e-100</td>
</tr>
<tr>
<td>EHF</td>
<td>ETS</td>
<td>isotig05227</td>
<td>503</td>
<td>3e-175</td>
</tr>
<tr>
<td>HNF4A</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig05389</td>
<td>264</td>
<td>1e-80</td>
</tr>
<tr>
<td>MZF1_1-4</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig00570</td>
<td>292</td>
<td>2e-87</td>
</tr>
<tr>
<td>MZF1_5-13</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig00570</td>
<td>292</td>
<td>2e-87</td>
</tr>
<tr>
<td>NFATC2</td>
<td>Rel</td>
<td>isotig03142</td>
<td>267</td>
<td>3e-78</td>
</tr>
<tr>
<td>NFIC</td>
<td>NFI CCAAT-binding</td>
<td>isotig04628</td>
<td>495</td>
<td>4e-164</td>
</tr>
<tr>
<td>NFKB1</td>
<td>Rel</td>
<td>isotig10963</td>
<td>236</td>
<td>9e-71</td>
</tr>
<tr>
<td>NR2F1</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig17626</td>
<td>268</td>
<td>4e-88</td>
</tr>
<tr>
<td>NR4A2</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig07234</td>
<td>428</td>
<td>6e-145</td>
</tr>
<tr>
<td>PPARG::RXRA</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig05389</td>
<td>614</td>
<td>0.0</td>
</tr>
<tr>
<td>REL</td>
<td>Rel</td>
<td>isotig12550</td>
<td>303</td>
<td>2e-98</td>
</tr>
<tr>
<td>RELA</td>
<td>Rel</td>
<td>isotig12550</td>
<td>229</td>
<td>1e-70</td>
</tr>
<tr>
<td>Rfx1</td>
<td>RFX</td>
<td>isotig13306</td>
<td>404</td>
<td>9e-134</td>
</tr>
<tr>
<td>Rxa</td>
<td>Hormone-nuclear Receptor</td>
<td>isotig05389</td>
<td>614</td>
<td>0.0</td>
</tr>
<tr>
<td>SP1</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig05381</td>
<td>375</td>
<td>3e-119</td>
</tr>
<tr>
<td>SP2</td>
<td>BetaBetaAlpha-zinc Finger</td>
<td>isotig18337</td>
<td>254</td>
<td>2e-80</td>
</tr>
<tr>
<td>STAT2::STAT1</td>
<td>STAT</td>
<td>isotig09154</td>
<td>282</td>
<td>2e-87</td>
</tr>
<tr>
<td>STAT2::STAT1</td>
<td>STAT</td>
<td>isotig13338</td>
<td>318</td>
<td>3e-103</td>
</tr>
<tr>
<td>Tcf12</td>
<td>Helix-Loop-Helix</td>
<td>isotig06344</td>
<td>248</td>
<td>1e-73</td>
</tr>
<tr>
<td>Tcf3</td>
<td>High Mobility Group (Box)</td>
<td>isotig06071</td>
<td>509</td>
<td>2e-175</td>
</tr>
<tr>
<td>TCF7L2</td>
<td>High Mobility Group (Box)</td>
<td>isotig06071</td>
<td>410</td>
<td>4e-136</td>
</tr>
<tr>
<td>TFAP2A</td>
<td>Helix-Loop-Helix</td>
<td>isotig06952</td>
<td>656</td>
<td>0.0</td>
</tr>
<tr>
<td>TFAP2C</td>
<td>Helix-Loop-Helix</td>
<td>isotig06952</td>
<td>403</td>
<td>5e-137</td>
</tr>
<tr>
<td>USF1</td>
<td>Helix-Loop-Helix</td>
<td>isotig10551</td>
<td>336</td>
<td>5e-115</td>
</tr>
<tr>
<td>YY1</td>
<td>BetaBetaAlpha-zinc finger</td>
<td>isotig08015</td>
<td>338</td>
<td>2e-113</td>
</tr>
</tbody>
</table>
Table 13. ホンハブ塩基性 [Asp49]PLA2 遺伝子プロモーター領域に結合すると予測された転写因子群

青背景は ETS ファミリー, 黄背景は Helix-Loop-Helix ファミリー, 赤背景は Rel ファミリー, 緑背景は BetaBetaAlpha-zinc Finger ファミリー, 灰背景は RXR-related receptors (NR2), をそれぞれ示す。黒枠は TATA box 結合タンパク質, 青枠は EHF をそれぞれ示す。
Table 14. ホンハブ *PfPLA 6* 遺伝子プロモーター領域に結合すると予測された転写因子群

<table>
<thead>
<tr>
<th>Name</th>
<th>Score</th>
<th>Position</th>
<th>Strand</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rxra</td>
<td>15.152</td>
<td>8-18</td>
<td>-</td>
<td>CAGAGGTGAC</td>
</tr>
<tr>
<td>HNF4A</td>
<td>11.37</td>
<td>9-23</td>
<td>+</td>
<td>CTGACCTGCTGCCACC</td>
</tr>
<tr>
<td>NR4A2</td>
<td>8.842</td>
<td>9-16</td>
<td>-</td>
<td>GAGGTCA</td>
</tr>
<tr>
<td>NR2F1</td>
<td>11.759</td>
<td>10-23</td>
<td>+</td>
<td>TTACCCTGCTGACCC</td>
</tr>
<tr>
<td>PPARG::RXRA</td>
<td>14.549</td>
<td>10-24</td>
<td>-</td>
<td>GGGTGGCGAGAGTCGA</td>
</tr>
<tr>
<td>TFPAP2A</td>
<td>11.736</td>
<td>27-41</td>
<td>+</td>
<td>GGGCGCCCGAGGAT</td>
</tr>
<tr>
<td>TFPAP2C</td>
<td>12.931</td>
<td>27-41</td>
<td>+</td>
<td>GGGCGCCCGAGGAT</td>
</tr>
<tr>
<td>ERBF</td>
<td>13.559</td>
<td>30-40</td>
<td>-</td>
<td>TGGCGCAGGGA</td>
</tr>
<tr>
<td>TFPAP2A</td>
<td>6.983</td>
<td>30-44</td>
<td>-</td>
<td>TGGCGCAGGGA</td>
</tr>
<tr>
<td>Nfatc2</td>
<td>6.725</td>
<td>37-47</td>
<td>+</td>
<td>GGGATGGGAGA</td>
</tr>
<tr>
<td>Rfx1</td>
<td>6.618</td>
<td>53-66</td>
<td>-</td>
<td>TTTGCGCTGGAGAGCA</td>
</tr>
<tr>
<td>E2f6</td>
<td>7.694</td>
<td>63-73</td>
<td>+</td>
<td>AGCGGGGGAGG</td>
</tr>
<tr>
<td>Ebf</td>
<td>6.678</td>
<td>66-79</td>
<td>-</td>
<td>CTGTGGCC</td>
</tr>
<tr>
<td>TBP</td>
<td>6.878</td>
<td>67-81</td>
<td>+</td>
<td>CACGCTGACCTGCACA</td>
</tr>
<tr>
<td>STAT2::STAT1</td>
<td>14.114</td>
<td>67-81</td>
<td>-</td>
<td>CACGCTGACCTGCACA</td>
</tr>
<tr>
<td>MZF1_5-13</td>
<td>7.224</td>
<td>68-77</td>
<td>+</td>
<td>CGCCCCGAAA</td>
</tr>
<tr>
<td>NFKB1</td>
<td>6.732</td>
<td>72-82</td>
<td>-</td>
<td>CCCCCCTCCCC</td>
</tr>
<tr>
<td>Rel</td>
<td>5.392</td>
<td>73-82</td>
<td>-</td>
<td>CCCCCCTCCCC</td>
</tr>
<tr>
<td>Rela</td>
<td>5.392</td>
<td>73-82</td>
<td>-</td>
<td>CCCCCCTCCCC</td>
</tr>
<tr>
<td>YY1</td>
<td>11.034</td>
<td>96-107</td>
<td>+</td>
<td>GAAAAGCGCGC</td>
</tr>
<tr>
<td>Tcf3</td>
<td>7.278</td>
<td>106-116</td>
<td>-</td>
<td>CTCATCGAGG</td>
</tr>
<tr>
<td>Tcf7l2</td>
<td>7.588</td>
<td>108-121</td>
<td>+</td>
<td>CGACAGAAGACAAA</td>
</tr>
<tr>
<td>Ppar5::Rxra</td>
<td>12.576</td>
<td>113-127</td>
<td>+</td>
<td>TGCGGCGAGAGGTGCA</td>
</tr>
<tr>
<td>Hnf4a</td>
<td>12.998</td>
<td>114-128</td>
<td>-</td>
<td>GYGGCACTGCTCC</td>
</tr>
<tr>
<td>Nr2f1</td>
<td>12.904</td>
<td>114-127</td>
<td>-</td>
<td>GYGGCACTGCTCC</td>
</tr>
<tr>
<td>Ehf</td>
<td>6.552</td>
<td>116-123</td>
<td>-</td>
<td>CCCCTGCC</td>
</tr>
<tr>
<td>Rxra</td>
<td>10.8</td>
<td>119-129</td>
<td>+</td>
<td>CAGGGTCACC</td>
</tr>
<tr>
<td>Nrf4a2</td>
<td>8.782</td>
<td>121-128</td>
<td>+</td>
<td>CAGGGTCACC</td>
</tr>
<tr>
<td>Tcf12</td>
<td>8.859</td>
<td>123-133</td>
<td>-</td>
<td>GCGCGTGAGG</td>
</tr>
<tr>
<td>Usf1</td>
<td>12.532</td>
<td>123-133</td>
<td>-</td>
<td>GCGCGTGAGG</td>
</tr>
<tr>
<td>Bhlhe40</td>
<td>11.161</td>
<td>124-134</td>
<td>+</td>
<td>GTGCACTGCCG</td>
</tr>
<tr>
<td>Tcf3</td>
<td>9.965</td>
<td>124-134</td>
<td>+</td>
<td>GTGCACTGCCG</td>
</tr>
<tr>
<td>Mzf1_5-13</td>
<td>6.564</td>
<td>139-148</td>
<td>+</td>
<td>GACCTGGGA</td>
</tr>
<tr>
<td>Mzf1_1-4</td>
<td>9.085</td>
<td>142-147</td>
<td>+</td>
<td>TGCGGAA</td>
</tr>
<tr>
<td>NfkB1</td>
<td>14.171</td>
<td>143-153</td>
<td>-</td>
<td>GGGCCTGCC</td>
</tr>
<tr>
<td>Rel</td>
<td>8.782</td>
<td>144-153</td>
<td>-</td>
<td>GGGCCTGCC</td>
</tr>
<tr>
<td>Rela</td>
<td>10.764</td>
<td>144-153</td>
<td>-</td>
<td>GGGCCTGCC</td>
</tr>
<tr>
<td>Rel</td>
<td>6.587</td>
<td>145-154</td>
<td>-</td>
<td>GGGCCTGCC</td>
</tr>
<tr>
<td>Egri1</td>
<td>7.758</td>
<td>149-162</td>
<td>+</td>
<td>GCGGCTGCGCCGCT</td>
</tr>
<tr>
<td>Sp1</td>
<td>13.931</td>
<td>149-159</td>
<td>+</td>
<td>GCGGCTGCGC</td>
</tr>
<tr>
<td>Sp2</td>
<td>10.426</td>
<td>149-163</td>
<td>+</td>
<td>GCGGCTGCGCCGCT</td>
</tr>
<tr>
<td>Mzf1_1-4</td>
<td>8.51</td>
<td>154-159</td>
<td>-</td>
<td>GGGGAGA</td>
</tr>
</tbody>
</table>

青背景は ETS ファミリー、黄背景は Helix-Loop-Helix ファミリー、赤背景は Rel ファミリー、緑背景は BetaBetaAlpha-zinc Finger ファミリー、灰背景は RXR-related receptors (NR2)、をそれぞれ示す。黑枠は TATA box 結合タンパク質、青枠は EHF をそれぞれ示す。
7. 付録
7-1. プライマーリスト

<table>
<thead>
<tr>
<th>名称</th>
<th>配列</th>
<th>アニーリングサイト</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC-1</td>
<td>gTT TTA ggA AYg AAT TTT AAT TTA Tg</td>
<td>塩基性[Asp49]PLA2 遺伝子 5'上流</td>
<td>メチル化状態解析</td>
</tr>
<tr>
<td>BSC-4</td>
<td>TAA CTA CCC ATT TTA CAA TTT TTC</td>
<td>塩基性[Asp49]PLA2 遺伝子 1 イントロン</td>
<td>メチル化状態解析</td>
</tr>
<tr>
<td>BSC-5</td>
<td>gAA gAg AgT TgT TgT Tgg AgA g</td>
<td>PyPLA2 遺伝子 5'上流</td>
<td>メチル化状態解析</td>
</tr>
<tr>
<td>BSC-6</td>
<td>CRA CCA TTA TCC AAA ACR T</td>
<td>PyPLA2 遺伝子 1 イントロン</td>
<td>メチル化状態解析</td>
</tr>
<tr>
<td>CHO3</td>
<td>gCA AAg Ctg gCA CCT gTT TAT TA</td>
<td>IIA 型 PLAs 遺伝子 3'UTR</td>
<td>ゲノミック PCR</td>
</tr>
<tr>
<td>CHO5</td>
<td>gTA TCg ggA ggA TgA ggA CTC TC</td>
<td>IIA 型 PLAs 遺伝子 5'UTR</td>
<td>ゲノミック PCR</td>
</tr>
<tr>
<td>CNVBP-F2</td>
<td>gCA CAA ATg Ctg TTA CAA</td>
<td>[Lys50]PLA2 遺伝子 3 イントロン</td>
<td>SNP ジェノタイピング</td>
</tr>
<tr>
<td>CNVBP-R1</td>
<td>ACC gCA gAC gAT ggC CTT</td>
<td>[Lys50]PLA2 遺伝子 3 イントロン</td>
<td>SNP ジェノタイピング</td>
</tr>
<tr>
<td>CNVBP-R2</td>
<td>CAC Ctg CCT CTA gCA gGA Ctg Tg</td>
<td>[Lys50]PLA2 遺伝子 4 イントロン</td>
<td>SNP ジェノタイピング</td>
</tr>
<tr>
<td>IIExp-1</td>
<td>ggA CAT ATg AAT TgT ATC CAg TTT ggC CAC</td>
<td>PyIEPLAs 遺伝子 2 イントロン</td>
<td>組換えタンパク質発現</td>
</tr>
<tr>
<td>IIExp-2</td>
<td>gCA CTC gAg gCC CCC CCT CgT ggg ggC CCA</td>
<td>PyIEPLAs 遺伝子 4 イントロン</td>
<td>組換えタンパク質発現</td>
</tr>
<tr>
<td>M13 Forward</td>
<td>CgC CAg gTT TTT CCC AgT CAC gAC</td>
<td>ベクタープライマー</td>
<td>サイクルシークエンス</td>
</tr>
<tr>
<td>M13 Forward</td>
<td>gTA AAA CgA Cgg CCA g</td>
<td>ベクタープライマー</td>
<td>サイクルシークエンス</td>
</tr>
<tr>
<td>M13 Reverse</td>
<td>CAg gAA ACA gCT ATg AC</td>
<td>ベクタープライマー</td>
<td>サイクルシークエンス</td>
</tr>
<tr>
<td>MS3-1</td>
<td>gAC CCT CCT TgC AAC gAA Ag</td>
<td>PyPLA2 遺伝子 2 イントロン</td>
<td>逆転写 PCR</td>
</tr>
<tr>
<td>MS5-1</td>
<td>gCC TgT TCC AAT TgT gga Ag</td>
<td>PyPLA2 遺伝子 4 イントロン</td>
<td>逆転写 PCR</td>
</tr>
<tr>
<td>Mul1-1</td>
<td>CTT TgT YDR TCT gTg CAA ASA gCT</td>
<td>MUL1 遗伝子 3'UTR</td>
<td>ゲノミック PCR</td>
</tr>
<tr>
<td></td>
<td>AgA g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSP-F1</td>
<td>ACC Cgg gTT CAA ATg CTC</td>
<td>IIA 型 PLAs 遺伝子 3 イントロン</td>
<td>定量 PCR</td>
</tr>
<tr>
<td>NSP-R1</td>
<td>gCA gAg CAA ACC Ctg gTT A</td>
<td>IIA 型 PLAs 遺伝子 3 イントロン</td>
<td>定量 PCR</td>
</tr>
<tr>
<td>OTUD3-1</td>
<td>CCT Tgg Tag CCT TggCat CAg</td>
<td>OTUD3 遺伝子 1 イントロン</td>
<td>ゲノミック PCR</td>
</tr>
<tr>
<td>PBC-3</td>
<td>TTT TTT gTT TgT ATT TTA gTT</td>
<td>IB 型 PLAs 遺伝子 5'上流</td>
<td>メチル化状態解析</td>
</tr>
<tr>
<td>PBC-4</td>
<td>AAT CAA AAA AAC CTA ACA TAT CCC</td>
<td>IB 型 PLAs 遺伝子 1 イントロン</td>
<td>メチル化状態解析</td>
</tr>
<tr>
<td>PyPLA2-3'Fl</td>
<td>TTT ggT Tag TTT CCA TCT gCT Tgg g</td>
<td>PyBP-1 遺伝子 3'フレーミング</td>
<td>ゲノミック PCR</td>
</tr>
<tr>
<td>ディレクター</td>
<td>フライマー</td>
<td>ゲノミック PCR</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>PfPLA2-5'Fl</td>
<td>gGA CTA gCT gTA gTC Tgg C</td>
<td>PtBP-I 遺伝子 5'フランクリング</td>
<td></td>
</tr>
<tr>
<td>pGIID-1</td>
<td>gTT CCT ggC ATT TCA ACC ATC</td>
<td>IID 型 PLA2 遺伝子 第1イントロン</td>
<td></td>
</tr>
<tr>
<td>pGIID-2</td>
<td>TgC ACA ggA ggT TTg ggT Ag</td>
<td>IID 型 PLA2 遺伝子 第4エクソン</td>
<td></td>
</tr>
<tr>
<td>ppp20</td>
<td>ACC gCC gAC AgA Atg AAT CC</td>
<td>IB 型 PLA2 第1エクソン</td>
<td></td>
</tr>
<tr>
<td>ppp21</td>
<td>ACA TCA gTg CCT CAT TTT ATT gTT C</td>
<td>IB 型 PLA2 3'UTR</td>
<td></td>
</tr>
<tr>
<td>SHU7</td>
<td>CAg AgC AAg AAg AgT ATC CN</td>
<td>ACTB 遺伝子 第2エクソン</td>
<td></td>
</tr>
<tr>
<td>SHU8</td>
<td>TAg ATg ggC ACA gTg Tgg gN</td>
<td>ACTB 遺伝子 第3エクソン</td>
<td></td>
</tr>
<tr>
<td>SK8</td>
<td>CAC AgT ggC TgA gTg CAT g</td>
<td>OoPLA2-o2 遺伝子 5'上流</td>
<td></td>
</tr>
<tr>
<td>SPII-2</td>
<td>ggC CgA gTC CgT CgT AgC T</td>
<td>IIE 型 PLA2 遺伝子 3'UTR</td>
<td></td>
</tr>
<tr>
<td>SPII-3</td>
<td>gTA gAC TgC gCg TAA TTT gTA g</td>
<td>IIE 型 PLA2 遺伝子 5'UTR</td>
<td></td>
</tr>
<tr>
<td>SPII-8</td>
<td>CAg TCC TTC CAT AAA gCT C</td>
<td>IIE 型 PLA2 遺伝子 5'UTR</td>
<td></td>
</tr>
<tr>
<td>SPII-10</td>
<td>CTT gCA CgT CTC Cgg ATT gTg</td>
<td>IIE 型 PLA2 遺伝子 3'UTR</td>
<td></td>
</tr>
<tr>
<td>SPIIF-1</td>
<td>TCA RAA CHS ggg SCB Agg AAA ACA CTT g</td>
<td>IIF 型 PLA2 遺伝子 第4エクソン</td>
<td></td>
</tr>
<tr>
<td>SPIIF-2</td>
<td>ATg Agg CTg TCT CAC gTA gC</td>
<td>IIF 型 PLA2 遺伝子 第1エクソン</td>
<td></td>
</tr>
<tr>
<td>SPIIRT-1</td>
<td>CAC ATC ATC RAg CAC Ttg AC</td>
<td>IIE 型 PLA2 遺伝子 第2エクソン</td>
<td></td>
</tr>
<tr>
<td>SPIIRT-2</td>
<td>TCC TTC gCA CAg ACA gTT g</td>
<td>PjHEPLA 遺伝子 第4エクソン</td>
<td></td>
</tr>
<tr>
<td>SPIIRT-3</td>
<td>TCC TTC gCA CAg gCg gTT A</td>
<td>OoIEPLA 遺伝子 第4エクソン</td>
<td></td>
</tr>
<tr>
<td>T3 Promoter</td>
<td>ATT AAC CCT CAC TAA Agg gA</td>
<td>ベクタープライマー</td>
<td></td>
</tr>
<tr>
<td>T7 Promoter</td>
<td>TAA TAC gAC TCA CTA TAg gg</td>
<td>ベクタープライマー</td>
<td></td>
</tr>
</tbody>
</table>

ベクタープライマー
サイクルシークエンス

ベクタープライマー
サイクルシークエンス
8. 参考文献

doi:10.1093/molbev/msr091

doi:10.1073/pnas.1314475110

doi:10.1186/gb-2011-12-7-406

doi:10.1093/gbe/evr043

doi:10.1042/0264-6021:3470491

doi:10.1007/s00239-003-2508-4

255

Hattori, S., 2014. 厳美群島の生物はどこから来たか「中新世の方舟にのって」. Horizon 40.

Hayama, S., 2005. トカラハブ毒腺ホスピリバーゼA2 (PLA2) アイソザイムのcDNAクローニングと進化学的解析. 卒業論文.

Ikeda, N., 2011. ハブ毒ホスホリバーゼA2 (PLA2) の遺伝子進化の分子機構. 博士論文.

isoenzymes of phospholipases A₂ (TFV PL-Ia, TFV PL-Ib, TFV PL-X) from *Trimeresurus flavoviridis* (habu snake) venom and the complete amino acid sequence of the basic phospholipase, TFV PL-X. Toxicon 24, 1117–1129. doi:10.1016/0041-0101(86)90138-8

Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J.,
Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R.,
Sheridan, A., Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman,
D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter,
N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French,
L., Graffham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C.,
McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R.,
Ross, M., Shoemaker, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier, L.W.,
McPherson, J.D., Marra, M. a, Mardis, E.R., Fulton, L.A., Chinwalla, a T., Pepin, K.H.,
Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A.,
Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins,
T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng,
J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R. a, Muzny,
D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C., Rives, C.M., Gorrell, J.H.,
Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H.,
Totoki, Y., Taylor, T., Weissbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier,
P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D.R., Doucette-Stamm, L.,
Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J., Rosenthal, A., Platte, M.,
Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood,
L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel, N. a, Abola, a P., Proctor,
M.J., Myers, R.M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D.R., Olson, M. V,
Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G. a,
Athanasiou, M., Schultz, R., Roe, B. a, Chen, F., Pan, H., Ramser, J., Lehrach, H.,
Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blöcker, H., Hornischer,
K., Nordseeck, G., Agarwala, R., Aravind, L., Bailey, J. a, Bateman, A., Batzoglou, S.,
Birney, E., Bork, P., Brown, D.G., Burge, C.B., Cerutti, L., Chen, H.C., Church, D.,
Clamp, M., Copley, R.R., Doerks, T., Eddy, S.R., Eichler, E.E., Furey, T.S., Galagan, J.,
Gilbert, J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K.,
Jang, W., Johnson, L.S., Jones, T. a, Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J.,
Kitts, P., Koonin, E. V, Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A.,
Mikkelsen, T., Moran, J. V, Mulder, N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz,
J., Slater, G., Smit, a F., Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J.,
Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H., Yang, S.P.,

with low activity, from *Trimeresurus flavoviridis* venom. J. Biochem. 107, 400–408.

Masuda, H., 2011. 先祖型ハプ毒腺ホスホリパーゼA2 (PLA2) 遺伝子のゲノム構造解析. 修士論文.

271

Nakasone, H., 2006. ハプ属毒ヘビの脳腎ホスピリバーゼA₂の遺伝子解析 --島嶼・進化の観点から--. 修士論文.

Okinawa Prefectural Institute of Health and Environment, 2011. ハブに注意!

Ota, H., 2012. 琉球列島を中心とした南西諸島における陸生生物の分布と古地理 -これ

Ullate-Agote, A., Milinkovitch, M.C., Tzika, A.C., 2014. The genome sequence of the corn

Yatsui, T., 2006. 毒腺ホスホリパーゼA₂アイソザイムからみる離島ハブの特異性と普遍性. 修士論文.

9. 謝辞

本研究を遂行及び学位論文の作成にあたり、終始暖かく見守って下さり、様々な挑戦をさせて下さった恩師、千々岩崇仁 教授 (崇城大学大学院 工学研究科 応用生命科学科 生命情報科学講座) には深く感謝しております。

本研究を遂行及び学位論文の作成にあたり、多くの御助言を下さった大野素徳 教授 (崇城大学大学院 工学研究科 応用生命科学科 生命情報科学講座), 武谷浩之 教授, 宮原浩二 准教授, 上田直子 教授 (崇城大学 藥学部 藥学科 生化学研究室), 中村仁美 助教, 池田直樹 博士の各先生方に深く感謝しております。

次世代シークエンサーで解読したホンハブのゲノム配列及びRNA-seq配列情報をご提供して頂いた服巻保幸 教授 (九州大学 生体防御医学研究所 トランスオミクス医学研究センター) と 柴田弘紀 准教授, そしてハブ生体組織サンプル採取とハブ属・ヤマハブ属の日本南西諸島渡来時期と経路に関する研究に、ご協力頂いた服部正策 准教授 (東京大学 医科学研究所 奄美病害動物研究施設) と倉石武 特任助教の各位先生方に心から御礼申し上げます。

また、学位論文の御校閲を賜りました、原島俊 教授 (崇城大学 生物生命学部 応用微生物工学科), 武谷浩之 教授に心から御礼申し上げます。

4回生の林みず紀さんとは共同で研究を進め、多くの刺激を受けることができたことを心から御礼申し上げます。

最後に、本研究を進めるにあたり多大なご協力を頂きました生命情報科学講座の皆様に感謝致します。